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Preface

This report addresses navigation technology aspects of the MARAD Great Lakes -

St. Lawrence Seaway Navigation/Communication Program. Recent navigation

technology developments in the areas of differential GPS, RACON, and

microwave ranging offer accuracies which could improve marine efficiency and

vessel safety during transit of these waterways.

An overview and bibliography of ground and space-based electronic candidate

nav aids suitable for confined waterways is given followed by a discussion of

alternative methods of performance analysis, including sensor accuracy prediction

and closed-loop pilotage simulation techniques. Selected for system assessment is

a closed loop method which replaces the pilot/display portion of the system with a

steering law tuned to obtain maximum performance from each candidate nav-aid

combination. A steering algorithm and simulation software is then developed and

verified in Z 20-20 turning maneuvers, using previous USCG and MARAD
results.

A 14-state navigation filter is implemented for driving the steering algorithm.

Inputs include a heading sensor and rudder position indicator, and up to four

channels of radio nav-aid data. Sensor dynamics are modeled within both the

environment and navigation filter. A ship footprint clearance width performance

measure is developed, and used to compile channel width distributions for

DGPS, differential LORAN-C, RACON and microwave systems. Distributions

are obtained for two levels of ship disturbances, in both turn approach and turn

recovery regions. The contribution of nav-aid subsystems to the overall waterway

channel-width error budget is obtained.

Based upon DGPS and LORAN-C results, the report recommends development

of Federal Radio Navigation Plan (FRP) performance standards specifically

aimed at the confined waterway steering environment. Field measurements of the

most promising sensor configurations is recommended, along with human factors

display simulations incorporating the sensor models and navigation filter software

of the present simulation system.

This work was sponsored under U.S. Department of Transportation contract

DTRS-57-85-C-0090, in support of the U.S. Maritime Administration. The

authors wish to thank the staff of DOT/TSC for their patience, guidance and

support during this endeavor. Frank Mackenzie was the project monitor.
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1. Introduction

This report addresses navigation technology aspects of the MARAD Great Lakes - S
t. Lawrence

Seaway Navigation/Communication Program. Recent navigation technology developments in the

areas o
f

differential GPS, RACON, and microwave ranging offer accuracies which could improve

marine efficiency and vessel safety during transit o
f

the waterways o
f

interest.

Several o
f

the aids evaluated in this report have previously been evaluated using human factors

simulators. However, sensor performance requirements are costly to develop with this approach.

Errors in vessel cross-track and heading are difficult to apportion into human pilotage, display

format, sensor dynamics and electromagnetic noise components.

Recently a methodology for standardizing sensor specifications and estimating vessel closed loop

performance has been applied to the marine problem [A-2]. This analytical and computer

simulation approach for accuracy assessment replaces the pilot/display portion o
f

the system with

a control law tuned to obtain maximum performance for each candidate nav-aid. While in a
n

implemented system such a controller might only b
e utilized to display predictions o
f

vessel

footprint, a
n experienced pilot might approach the absolute performance obtained b
y

the controller.

Those sensor systems exhibiting poor control performance in simulation would likely prove

unacceptable for driving pilot displays in the actual shipboard environment. Reducing the cost o
f

comparing a large variety o
f

sensor combinations, sensor candidates showing most promise may

b
e

tested in a complete human factors simulation.

The accuracy assessment model is shown in Figure 1-1. In the analysis and simulation work to
follow the overall system is partitioned into the environment portion and the navigation and control

gain portion:

• Ship and Sensor Environment Portion

- Vessel Steering Dynamics and Disturbance Model

- Water Current Model

- Raw Sensor Dynamics and Sensor Noise Model

- User Clock Model

- Waypoint Steering Geometry

• Navigation and Control Portion

- Ship and Sensor State Variable Model

- Navigation Filter, Including Rudder Feedback
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- Optimal Rudder Controller

- Waypoint Switching Logic

Implicit are multiple nav-aids, as well as a specified set of waypoint segments. The sensor portion

of the model includes dynamical and noise models for RACON, differential GPS (DGPS),

UHF/microwave multilateration, LORAN-C, and heading reference.

Prior to establishing the model in detail, Section 2 of the report gives a comprehensive overview

of both ground and space-based electronic candidate nav aids suitable for confined waterways.

Particular attention is given to the recent developments in marine differential GPS (DGPS).

Section 3 reviews the ship displays that have been investigated for precision ship guidance. In

Section 4 alternative methods of performance analysis are addressed, including a variety of

sensor accuracy prediction and closed-loop pilotage techniques. Offering the best balance of model

fidelity and computational efficiency, the approach based upon optimal stochastic rudder control is

selected.

In section 5 the ship and sensor environment state models are developed, including the effects of

sensor tracking loop dynamics. Ship steering model dynamics are then verified in Z 20-20 turning

maneuvers, using as a reference the turning results of previous USCG and MARAD simulations.

A complete 14-state navigation filter is developed and incorporated into the ship navigation

simulation. An optimal steering control law which seeks to minimize a weighted average of cross

track and heading error, relative to the local waypoint coordinate system, is then developed. This

control performance index tends to minimize the channel width needed for safe ship passage or,

equivalently, minimizes the probability of grounding to either side of the channel.

Section 6 presents the simulation results for four sensor families, DGPS, LORAN-C, RACON

and microwave. A channel clearance width performance measure is developed, and used to

compile cumulative distributions for required channel width. These distributions are compared

against those obtained using perfect sensors, and in so doing the contribution of the sensor

systems to the overall channel width budget is determined.

The report concludes with recommendations for development of nav-aid performance standards

suited to the confined waterway environment, and for further simulation and field measurements of

the most promising sensor configurations.

l–3/1 -4





2. NAVIGATION SENSORS

Among the navigation sensors proposed for driving ship displays and rudder controllers

are aided/differential LORAN-C, RACON radar beacon, primary radar with corner

reflectors, primary radar with clutter maps, UHF and X-band multilateration, and

differential GPS. The general characteristics of these candidate sensors are discussed

below. In section 6 representative sensors are assessed with a ship waypoint steering

simulation.

Sensors are grouped into ground-based and space-based families. These are further

subdivided according to the type of "raw" measurement produced. It should be kept in

mind that most electronic aids are of the point positioning variety. Also vital for vessel

control is ship orientation, or heading. Using dual antenna configurations it is possible to

obtain heading with multilateration and GPS systems. Multiple RACON measurements can

also be employed to derive heading. However, for a
ll options a
n auxiliary heading

reference sensor will be considered.

2.1 Overview o
f

Ground-Based Candidate Systems

2.1.1 Precision Ranging Systems

These systems employ a round-trip measurement technique to determine range to several

shore-side transponders. UHF and microwave ranging systems are available from many

manufacturers to meet the specialized needs o
f

local surveying and navigation.

Commercially available UHF and microwave ranging systems are capable o
f

1 meter

accuracy. Accuracy is limited primarily by uncertainty in the propagation medium,

including the effects o
f multipath. Careful navigation filter sensor integration can reduce the

effects o
f temporary signal blockage and strong multipath. However, difficult shore-side

terrain may require a substantial investment in the transponder grid.

2.1.1.1 Microwave [E-3],[E-9],[E-11]

One o
f

the most widely accepted systems, the Del Norte Trisponder, is available in both X
band and UHF configurations, with ranges to 80 Km for the UHF variant. At the

microwave frequency the dominant error source is receiver pulse timing jitter, limiting

accuracy to the one meter level. Range propagation biases are small, but special caution

must b
e observed in protecting the navigation solution from large signal dropouts and

multipath events.
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2.1.1.2 UHF [E-3], [E-15]

These systems typically operate just above 400 MHz, and achieve maximum ranges several

times that of microwave systems. Within LOS, UHF frequencies behave much as the

previous systems and can produce stable measurements within one or two meters accuracy.

Beyond LOS, a UHF signal may come into contact with a reflective temperature inversion

layer just above the water or land that forms a captive passage or duct. Unable to escape,

the signal must follow a path which approximates the curvature of the earth, and very

consistently reaches vehicles at ranges two and three times LOS. At some cost in accuracy,

the UHF systems provide far more efficient area-wide coverage than the microwave

Varlants.

2.1.2 Rho-Theta Systems

Rho-theta systems share many of the features of the above ranging systems. In addition,

they provide to the navigation filter a bearing angle measurement. As a family, these

systems are easily integrated into the ship-board surveillance radar display. The systems are

subdivided into primary and radar beacon categories. Primary radar requires little or no

cooperation from shore-based elements, and is potentially very attractive from a cost

standpoint. Techniques are under study which might provide sufficiently reliable ranging

and bearing angle measurements for navigation filter use. Radar beacon variants are active

in nature, requiring much the same shore-side support as the previously discussed ranging

systems.

2.1.2.1 Primary Radar [E-1], [E-5],[E-6]

Radar is an invaluable navigation aid for shipping. In difficult weather with reduced

visibility, the radar is often the only instrument that enables ships to move in busy waters.

The range of a large ship's radar is usually over 20 nautical miles, which means that action

can be taken at an early enough stage to avoid dangerous situations.

As of September 1, 1986, a
ll ships over 40,000 tons had to conform with the International

Maritime Organization requirements for automatic radar plotting aids (ARPA). This was

the latest deadline in a progressive schedule for retrofitting older vessels with modern radar

equipment. The rules already applied to a
ll

new vessels built since 1984, and to a
ll tankers,

old and new, over 10,000 grt.

Provided the channel boundaries can b
e unamiguously defined on the radar display, short

range primary radar offer the potential for direct vessel control from the radar display.
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Human factors simulations of vessel steerage using primary radar have been carried out [D
7]. However, it is desirable to automatically process range and bearing angles within a

navigation filter. The resulting state estimates can then be used to drive digital map

displays.

Two techniques have been suggested for precisely registering the primary radar with the

shore datum. The first of these techniques employs polarized corner reflectors and a

specially polarized ship radar antenna [E-5]. In early evaluations of this variant [E-6],

acquisition and tracking of targets was judged not acceptable. Under dynamical conditions

tracking biases were also observed. The second radar data registration technique, real-time

correlation of the radar image with a previously stored radar clutter map [E-1], is derivative

of image processing and tracking technologies employed in military systems. While

preliminary results look encouraging, problems of mismatch between the clutter mapping

radar and the ship radar, as well as the currency of the clutter map data base, are still

outstanding problem areas.

2.1.2.2 Radar Beacon (E-7),[E-12),[E-14]

Primary radar echoes from small buoys and navigation markers are often masked by noise

or sea clutter, and in complicated passages the display can be difficult to interpret. Ever

since radar was introduced there has therefore been a need for equipment which can

improve the possibility of detecting specific targets and also make identification easier.

Passive reflectors, which give a larger target area, were available quite early on and are still

widely used. However, reflectors only give a stronger echo and do not make identification

any easier.

RACON is a secondary radar system which responds at the frequency used by the

searching radar with a coded or modulated response, and is generally compatible with the

standard short-range ship radar. The output of this system may be displayed on the ships

PPI, and can also be interfaced with other displays and the navigation computer. Because

of it
s

coded response signature, the system overcomes the registration problems o
f primary

radar. It also provides a nearly multipath-free response, enabling more precise estimates o
f

range and bearing angle.

The second generation AGA-ERICON radar beacon, developed b
y

the Defense and Space

Systems Division o
f LM Ericsson, in close collaboration with the Swedish Administration
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of Shipping and Navigation, intercepts pulses from an X- or D-band radar and responds at

the same frequency with a high degree of frequency accuracy and little delay [E-14]. The

length of the response signal can be programmed to any desired value, and it can easily be

coded in Morse or some other system. Since the RACON always responds at the frequency

of the searching radar, the whole of the transmitted power is available in the radar receiver

bandwidth. This reduces the sensitivity to different types of clutter. The waiting time

between responses is short and the RACON response can be displayed during each antenna

IOtation.

In October 1980 a prototype of AGA-ERICON was installed on Trubaduren, a caisson

lighthouse at the entrance to the harbor of Gothenburg, on the west coast of Sweden. It

replaced an older, slow sweep X-band RACON and a fast sweep S-band RACON. It is

programmed to respond for 30 seconds per minute and is equipped with a side lobe

memory.

The Coast Guard presently has approximately 80 RACONs in operation at various

locations and has 30 more on order. They currently operate various RACON types but will

standardize on the frequency agile types. A U.S. Coast Guard final rule was published in

the Federal Register on April 3, 1986 authorizing the operation of private RACONs.

Requests from the offshore industry, and favorable experience with Federal RACONS,

caused the Coast Guard to recognize the desirability of private RACONS. Previously, all

private marine electronic aids to navigation, with the exception of shore based radar

systems, were prohibited.

When used with a standard ships radar, RACON accuracy is primariliy limited by range

jitter in the ship interrogator, and by azimuth measurement error. Typical azimuth angle

measurements are good to about one degree. This translates into a 17 meter position error at

1000 meters, unacceptable in confined waterways. However, angular accuracy can be

improved by an order of magnitude by fitting the ship with a more complex monopulse

radar system [E-17].



2.1.3 Hyperbolic Systems

The hyperbolic family is based upon time-of-arrival measurements by a passive user. First

developed in WWII, several generations of hyperbolic systems have been installed and

operated by US and foreign governments.

2.1.3.1 LORAN-C

This system is under the control of the U.S. Coast Guard, and covers the entire U.S.

coastline, as well as many other ocean areas, most notably the Mediterranean and large

portions of the North Sea, Norwegian Sea and North Atlantic. Nominal geographical

accuracy is 0.25 nautical miles, with repeatability accuracy (the ability to return to a given

set of LORAN-C coordinates) on the order of 50-300 feet, according to the Coast Guard.

Repeatability of time differences is maintained within each LORAN-C chain by a local area

monitor, which transmits commands back to the master and slave stations. To promote

cross-chain operation, and interoperability with other nav-aids such as GPS, efforts are

underway to provide independant synchronization of LORAN masters and slaves, using a

time transfer system such at GPS. This will somewhat degrade the repeatable accuracies

presently obtainable with the system.
-

LORAN-C signals are subject to errors caused by distortion from irregular land masses,

local weather conditions, seasonal and daily variations, system geometry and interference

from other radio signals on nearby wavelengths. Some of these (such as the land-path

distortion) are predictable and can be removed by readjusting the LORAN-C lines of

position on the appropriate nautical charts, or by reprogramming the LORAN-C receivers

themselves. Other sources of error can be cancelled out using the cited differential

techniques, which involves setting up fixed monitoring stations at known locations. These

monitors constantly compared the received signals against their known positions, and then

rebroadcast the necessary corrections. The mobile receiver automatically receives the

corrections and applies them to the received signals' anomalies.

The U.S. Coast Guard has just completed a research program evaluating the feasibility of

differential techniques to enhance the accuracy of the LORAN-C radionavigation system.

To demonstrate the system, the Coast Guard held a series of trials aboard the buoy tender

Cowslip in Hampton Roads harbor in July 1986. For the differential LORAN-C

demonstrations aboard the Cowslip, the Coast Guard set up three monitoring sites in

Hampton Roads harbor. Each monitor consisted of a high-resolution, Survey-grade
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LORAN-C receiver, with two small Hewlett Packard computers. The LORAN-C

corrections were automatically calculated and sent through a modem to a UHF radio

transmitter, which broadcast these values very three minutes to th
e

mobile receiver aboard

the ship.

On the Cowslip, the differential LORAN-C signals were received through a similar UHF

transceiver and modem. The ship was also fitted with a computer-based buoy positioning

system, with which the differential LORAN-C was integrated. The ship's conning officer

drove the vessel carefully through a moderate breeze and slight chop, nosing her buoy

tending port up a buoy. The relative positions o
f

the ship and buoy could be monitored o
n

color CRT screens on each bridge wing, along with readouts o
f

essential information. On

the initial approach the differential LORAN-C inputs were used. Once the buoy was

alongside, the LORAN-C position was compared against the position calculated b
y

the

computer from around o
f

horizontal sextant angles. The static difference was about 1
2

yards. To show the comparison between the differential LORAN-C position and the

uncorrected LORAN-C coordinates, the differential LORAN-C computations were

temporarily switched off. The offset was found to b
e

about 60 yards.

Assuming all biases have been reduced to a
n

acceptable level over a local area, the

differential system is ultimately limited b
y

the dynamical tracking accuracy o
f

third cycle

phase tracking, a
s influenced by ship motion and 100 kHz signal-to-noise ratio. This

fundamental limit has been previously studied b
y

theoretical means [F-7], [A-3]. While in

many applications tracking loop jitter and dynamical lags can b
e ignored, for precision

waterway applications these effects are o
f paramount importance, and are included in the

simulation results of section 6
.

2.2 Overview o
f Space-Based Candidate Systems

Historically, the first space-based navigation system was the TRANSIT system. Deployed

b
y

the U.S. Navy in the mid 60's, the TRANSIT system provides precise updates o
f

position approximately every ninety minutes. In the early 70's a joint effort within the

DOD led to the development o
f

a much more powerful system, the Global Positioning

System. Recently, numerous private sector activities aimed a
t

real-time vehicle navigation

and position reporting have appeared.



2.2.1 GPS

In a variety of applications, from high dynamics jet aircraft navigation, to baseline

surveying to centimeter accuracies, the GPS has exceeded the expectation of it
s designers.

The GPS system is operable in several modes. For military applications the system must b
e

tolerant o
f heavy electronic jamming and b
e capable o
f performing well in a high-dynamics

environment. This encripted P-code reception mode will not b
e available to civilian users,

and will not b
e further considered. The civil community is expected to use the C/A signal

transmissions, which offer excellent low-dynamics performance without excessive signal

tracking noise and dynamical lags. The spread-spectrum signal structure provides

resistance to RF interference and some resistance to multipath. However, signal blockage

o
f

low elevation satellites is o
f

concern. In many locales it will b
e necessary to augment the

satellite constellation with one o
r

more local transmitters. These "pseudo-satellites" appear

to the receiver a
s space satellites, and may b
e processed with the standard GPS receiver.

Of the three GPS modes the least accurate, "GPS/SA", gives a
n

uncorrected position fix,

using the measured arrival times on the C/A channel. The receiver processes these code

arrival times and the broadcast satellite data, and outputs the vehicle state vector. The state

vector may include position, velocity and acceleration components. In this mode the major

errors are system biases, which are independent o
f

receiver noise and dynamical lags. In

phase II GPS spacecraft, the GPS ground tracking stations run by DOD will have the

capability o
f introducing various errors into the C/A signal transmissions. To the user these

errors will look like satellite clock and satellite ephemeris errors. Since these error sources

are nearly identical for all receivers in a given region, local calibration techniques may b
e

used to remove them, along with other errors due to ionospheric delay. This is the basis for

the differential reception mode, DGPS. It is stated U.S. policy to deny the civilian

community maximum performance in the non-differential C/A mode, limiting accuracy to

100 meters 2D rims, far outside acceptable limits for confined waterway operation.

2.2.1.1 Differential GPS, Code Mode

Using the "differential C/A code" reception mode, accuracies to several meters have been

demonstrated o
n low-dynamics platforms [F-3]. Delta-range information is obtained by

measuring the Doppler frequency shift o
f

the L-band carrier. This enables velocity

measurements good to several tenths o
f

meters per second. For distances o
f u
p

to several



hundred km from the differential reference station the limiting factors on accuracy appear

to be multipath and code loop tracking noise [F-5].

2.2.1.2 Differential GPS, Integrated Doppler Mode

The most accurate of the C/A GPS modes is differential/carrier [F-4]. This is based upon

continuous tracking of signal phase on a
ll satellites, and solution for the carrier phase

ambiguity. At the L-band wavelength o
f

0.3 meters, the carrier phase observable is far

more precise than the signal envelope measurement. In a multiple antenna receiver, the

carrier tracking mode also enables very precise ship heading to b
e

obtained. To date the

carrier technique has been applied primarily in surveying applications, but preliminary real

time results rival the accuracies obtained with a microwave ranging system [F-3]. Real-time

accuracies to the meter level, and better, appear possible. The most significant errors in this

mode o
f operation arise from propagation path delays through the ionosphere, and satellite

positioning errors, which tend to slowly decorrelate a
s

the the separation between the

reference station and the ship increases. The contribution from these sources is generally

under 1 meter, out to distances o
f

100 km from the reference station [F-5].
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3. Overview of Display Systems

[D-1]-[D-7]

A variety of pilot displays and navigation sensors have been suggested for use in

confined waterways. Pilot displays ranging from simple digital readouts to accurate

renditions of the pilot view seen from the ship's bridge have been examined with

human factors simulations. Display formats have incorporated own-ship position

and crosstrack error and velocity data, as well as predicted-track data.
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4. Performance Evaluation Tools

Sensor selection involves recognition of many factors, including user and government

capitalization, operation and maintenance costs, sensor reliability and sensor positioning

performance. It is this last aspect which is of interest in this section of the report. Since the

sensor system may consist of several devices which are integrated to provide the necessary

estimates of vessel state, developing a suitably methodology for evaluating overall sensor

performance is an important problem. Manufacturer specifications, such as data rate and 95

percentile cumulative error probability, are generally insufficient for predicting closed loop

vessel control performance.

A variety of tools have been employed to evaluate and compare the performance of
position-fixing devices. Not a

ll o
f

these methods are appropriate for predicting performance

in the critical confined waterway application. Error sources which may b
e discounted in

open ocean and harbor approach must b
e carefully modeled in confined waterways. It is

therefor important to understand the rationale for selecting the optimal control simulation

methodology over other available techniques. Evaluation options can b
e divided into two

categories:

• Sensor Accuracy Prediction Methods

• Closed Loop Vessel Pilotage Performance Methods

With the first approach the sensor system o
f

interest is analyzed in isolation from the vessel

control. This leaves unanswered the level o
f pilotage accuracy which will ultimately b
e

obtained, and may give misleading information a
s

to the level o
f

sensor accuracy required

to meet overall vessel pilotage specifications. Three potential pitfalls o
f

the isolated sensor

accuracy approach are:

• Over-specification o
f

sensor accuracy

• Excessive sensor smoothing/extrapolation to achieve optimistic accuracy and

update-rate performance, and

• Incomplete picture o
f

combined multi-sensor performance.

Over-specification o
f

needed sensor accuracy occurs when the vehicle under control is

inherently difficult to control. Even with perfect knowledge o
f

vessel position, velocity and

orientation, the vessel footprint cannot b
e positioned arbitrarily well. For example, a



sensor accuracy specification of 3 meters makes little sense if
,

even with perfect

knowledge o
f

vessel state, pilotage error cannot b
e

reduced to below 1
0

meters.

The second problem area relates to the application o
f

excessive smoothing to achieve

optimistic specifications. Utilizing long signal tracking time constants to achieve noise

reduction will result in poor dynamical performance, and rapid sampling o
f

smoothed

sensor outputs will not provide independent estimates o
f ship position. While yielding

impressive static performance figures, reliance o
n

excessive smoothing and extrapolation

may yield erroneous predictions o
f

vessel dynamical pilotage performance.

Finally, care must b
e

taken when predicting the performance o
f

multi-sensor systems.

Vessel state estimation performance must account for realistic dynamics, a
s

encountered in

the overall control problem. Before discussing the preferred method o
f analysis, it is

worthwhile reviewing traditional methods o
f

sensor accuracy prediction.

4.1 Sensor Accuracy Prediction Methods

4.1.1 Static GDOP Analysis

The geometric-dilution-of-precision (GDOP) method is the traditional means for predicting

navigation and position-fixing performance. The position fix is o
f

the "one-shot" variety.

In essence, this method predicts performance by analysis o
f

the crossing angles o
f

lines-of

position (LOP). The underlying assumption is that observation errors (ranges, pseudo

ranges, bearing angles, and the like) are statistically independent. While the assumption o
f

independent measurement noise is a reasonable one, the static nature o
f

the analysis is too

restrictive. In modern practice ship-board equipment employs navigation filtering in the

position fixing process, leading in most circumstances to far better accuracies than

predicted for the "one-shot" position fix.

4.1.2 Covariance Analysis

A more realistic prediction o
f

sensor performance can b
e

obtained b
y

modeling the

dynamics o
f

the vessel with state-variables, permitting a prediction o
f navigation

performance for the Kalman filter. Typical ship states utilized in such a
n exploration might

be: sway velocity, yaw rate, geodetic heading, cross-track position, and along-track

position. Sensor inputs are generally modeled a
s

true ranges and bearings, plus additive

noise. An underlying assumption is that the navigation filter knows precisely the

parameters o
f

the ship and sensor dynamical models.
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The covariance method yields a statistical picture of accuracy averaged over a large number

of vessels, for a series of random maneuvers. Little insight is gained regarding accuracies

obtained for specific waypoint geometries and vessel turning maneuvers.

4.1.3 Sensor Simulation

The final method of sensor analysis treats specific waypoint geometries and turning

maneuvers. A set of vessel trajectories are first obtained, either by simulation, or from field

measurements of actual vessel maneuvers. For each trajectory of interest, a file of true

range and bearing angle data is then generated. Depending upon the fidelity of the

simulation, these "truth" files are then corrupted with simulated random noise, and may

also be subjected to signal tracking lag effects. The resulting simulated raw sensor data is

then used to drive an actual ship navigation filter, providing a very realistic picture of

sensor performance. As explained previously, such an analysis fails to address the problem

of overall vessel control accuracy. However, this approach is a basic building block

employed in the closed-loop methods discussed below.

42 Closed Loop Vessel Pilotage Performance Methods

Vessel closed-loop performance analysis seeks to address the turning and course keeping

accuracies obtainable from a given combination of sensors. Since achieved performance

will depend upon such non-sensor factors as pilot skill level, pilot display type, vessel

maneuverability, and wind and current disturbances, closed-loop performance analysis is

more complex than the sensor-only techniques discussed above. Traditionally, such studies

have been performed via human factors simulations, although recently computer simulation

methods have been developed for exploration of sensor and vessel behavior in the closed

loop mode.

4.2.1 Human Factors Simulation, Visual Nav-Aids

Simulation efforts have been carried out to study pilot and vessel response during various

modes of pilotage. The influence of buoyage geometry and lighting on track-keeping and

waypoint maneuvering had been extensively studied on the CAORF facility at the National

Maritime Research Center, and at facilities operated for the U.S Coast Guard by Eclectech

Associates [C-1]-[C-5],[C-6]-[C-10].

A basic scenario, typical of those studied at both facilities, involved a passage of two three

mile legs, with a 35 degree turn. Channel width was 500 feet. The best buoy arrangement

on the straight portion of course was found to be of the gated type, with gates spaced by
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5/8 NM. Wind and current disturbance conditions were fixed between runs. During all

reported tests the current on leg 1 was astern with a velocity of 11/2 knots, gradually

decreasing on leg 2 to 3/4 knots on the port quarter. Winds on both simulators were 30

knots, gusting from astern on leg 1 and on the port quarter during leg 2. Pilot track-keeping

results on both simulation facilities were very similar. Typical multi-run track-keeping

standard deviations were 15 meters, with biases of 5 to 15 meters depending upon the

relative wind and current vector. Under poorer visual aid conditions, staggered buoys 1 1/4

miles apart with 1 1/2 mile visibility, track-keeping standard deviation values increased to

25 meters.

On the turn to port from leg 1 to leg 2, best pilot visual results were obtained with three

buoy cutoff turns and gated buoys on each leg. Vessel dynamics had an important effect

during the turn, with the 80 dwt tanker experiencing more overshoot than the 30 dwt

tanker. For the larger vessel typical multi-run standard deviations were 15 m, with a bias of

30 m to starboard. With staggered buoy conditions at the turn pullout, performance

degraded to 25m standard deviation, with a mean to starboard of 40 m. An important

factor underlying these experiments was pilot familiarity with the vessel dynamics and bow

image, and with the simulation test scenario.

The effect of underkeel clearance on turning performance received attention during some of

these simulation efforts [10]. It was found, as clearances were decreased from 600 to one

foot, that smaller clearance were helpful in reducing standard deviation on turns of under

35 degrees. The effect on larger turns was detrimental.

4.2.2 Human Factors Simulation, Electronic Displays

[D-1]-[D-4],[D-6],[D-7]

4.2.3 At-Sea Evaluation, Visual Aids

In the Fall of 1980 an effort was made to measure track-keeping and turning performance

of ships passing through the Craighill Channel and Craighill Channel Upper range of the

Chesapeake Bay [C-4]. At this time a large number of vessels were continuously queued

up waiting for coal loading in Baltimore, providing an excellent opportunity for in situ

experimentation. The piloting conditions were similar to those reported in the simulation

work. Channel width is approximately 600 feet on each leg, with a cutoff turn of 20

degrees. Buoyage is of the gated type with spacing of approximately 3/4 nm.
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Data was taken on 21 ships, 14 of which were tracked by a properly calibrated Raydist low

frequency position-fixing system. On 30 of the leg transits no traffic interference which

could degrade track-following and turn performance was experienced. The ships were

primarily coal carriers, but other vessel types were also included in the experiment. The

aggregate track-keeping standard deviation for runs without vessel interference, including

a
ll

weather and current conditions, was approximately 1
5

m
.

This compares favorably with

the cited visual simulation results.

The data from the at-sea experiment were arranged into two wind speed groups, below and

above 1
0

knots. Prevailing from the northwest, the winds typically were o
n

the port bow

during leg 1 and on the bow in leg 2
. On the more difficult segment, leg 1
, track-keeping

standard deviations were about the same for each wind classification, indicating that o
n

a

straight course with gated buoyage pilots are easily able to adjust vessel helm to overcome

wind disturbances. However, a
t

the turn there was a very large difference between the two

wind classification. In the under 1
0 knot group standard deviations o
f

20 m were obtained,

consistent with simulation results. In the over 1
0 knot group, standard deviations increased

to 90 m, much larger than the simulated results. Among the possible factors contributing to

degraded pilotage may have been the variability o
f windage for different vessels, and the

lack o
f

vessel dynamics familiarity obtained on the brief passage from anchorage to the test

range. The large difference between track-keeping and waypoint turning performance

underscores the greater difficulty pilots have in estimating the vessel state and developing

good rudder control inputs on turns.

4.2.4 Optimal Control Simulation -

Recently a methodology for standardizing sensor specifications and estimating vessel

closed loop performance has been applied to the marine problem [A-4]. Reducing the

expense o
f comparing a large variety o
f

sensor and display combinations, sensor

candidates showing most promise may later b
e

validated in a complete human factors

simulation.

The analytical and computer simulation approach selected for accuracy assessment models

the pilot/display portion o
f

the system with a control law tuned to obtain maximum

performance for each candidate nav-aid, for identical vessel dynamics and disturbances.

While in a
n implemented system such a rudder controller might only b
e utilized to display

predictions o
f

vessel footprint, a
n experienced pilot should achieve a
n

absolute
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performance level approaching that of the model. This is the methodology used in the

remainder of this report.
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5. The Ship Optimal Control Simulator

5.1 Objective

Comprising four major subsystems, ship model, sensor model, navigation filter, and rudder

controller, the simulator offers an inexpensive means for comparing different electronic nav-aid

combinations, as measured by ship footprint control accuracy. With an optimal control law as

"stand in" for the human pilot, the rudder control and navigation filter are tuned to achieve the best

performance from each sensor combination.

In the modeling process, considerable attention was given to the design of the navigation filter, and

it
s integration with sensor and ship dynamics. Various rudder control methodologies were

investigated, including both optimal deterministic and stochastic design methods. The ship

dynamics model realized in both the environment and navigation filter was chosen with

computational efficiency in mind. The selected model was tested against steering maneuver data

published by MARAD and USCG simulation facilities.

As a human pilot navigates through a series o
f waypoints, Figure 5-1, a combination o
f

factors

are considered. If the potential for other traffic is low, the pilot generally applies rudder control so

a
s to minimize the probability o
f violating the channel boundaries. In designing the rudder control

and navigation filter elements o
f

the simulator, analytical performance measures were reviewed. In

the visual aid literature one finds a variety o
f

measures including ship cross-track error [C-1]-[C

6
] and relative risk factor [C-7),[C-8], and [C-10]. Unlike simple cross-track error, relative

risk factor (RRF) considers the minimum clearance between the vessel footprint and the channel

boundary, a
t specified along-track stations. Accounting for the vessel footprint orientation in the

channel, the RRF measure is closely related to the probability o
f grounding and collision. In this

report a similar measure is developed, Channel Clearance Width (CCW). The CCW function,

plotted for the length o
f

each simulation run, is the channel width needed such that the vessel

would not have contacted either channel edge. This is depicted in Figure 5-2. In designing the

ship navigation and rudder control system, the goal is to minimize CCW in one, o
r several, regions

o
f

th
e

channel. CCW data can b
e

used to compare the performance o
f

the different sensor options,

and can also b
e

used to estimate the probability o
f

safe vessel passage.
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Figure 5-1 Pilot Waypoint Steering
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LC = Left Clearance

RC = Right Clearance

Figure 5-2 Channel Clearance Width (CCW) Statistics
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Figure 5-3 shows the coordinate systems and state variables used in both the truth environment

and navigation filter and rudder control. The base of each waypoint leg defines a new waypoint

coordinate system. Three states represent ship dynamics: sway velocity, yaw rate, and waypoint

referenced heading angle error, and two states register global position information: crosstrack, and

alongtrack position. To add realism, two state variables represent easting and northing current

components are included. Noise-like wind and ship modeling terms are injected on ship sway

velocity and yaw rate axes.

Ship dynamics are recognized as being nonlinear and unstable. To implement the rudder control

and navigation filter, a procedure for linearization is needed. To lessen the complexities of

linearization a constant propeller thrust force and longitudinal velocity are assumed. In section

5.2, this ship state variable model will be developed in some detail.

In section 5.3 a suitably general sensor model is developed. Including tracking loop dynamical

lags, as encountered in such sensors ar LORAN-C, the model is linearized about a nominal ship

state trajectory, leading to an overall state variable model for ship and sensors. Section 5.4 gives

an overview of the ship navigation filter, and section 5.5 covers the rudder control design.

5.2 Ship Dynamics Model

From Figure 5-3 the ship states x
i,

1 < i < 7
,

are assigned a
s follows:

x
i

= sway velocity

x2 = yaw rate

x
3

= heading angle error

x
4

= crosstrack error on a waypoint segment

x
5

= alongtrack position o
n

a waypoint segment

x
6

= easting current bias

x
7

= northing current bias

Then the ship dynamics can b
e written a
s below, a
s adapted from Goclowski and Gelb to

accommodate the ship's alongtrack position in a local coordinate frame, in the presence o
f

current

[B-9]:
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Figure 5-3 Coordinate System and State Definitions
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X =-LC., x1 + V(Cyo - 1) x2 - +C., 81 L

<-ºº-º-º-º-º:
x3 =x,

x, =x, cos x3 + cos 6 x - si
n 9x, +V si
n x
,

x
3

= -x, sin x
;

+sin 9 x + cos 9x, +V cos x
,

X
6 = - O.

X
6 + nolSe

X
,

= -q, x
,

+ noise

where V is the ship's velocity in meter/second, L the ship length in meters, 6 is the rudder control

input in radian angle, C's are the hydrodynamic coefficients o
f

the ship, Appendix A
,

6 is the

heading o
f

the present course leg, and o
. is the time constant for the first-order current model. In

states x
1 and x
2

there is one positive eigenvalue. Hence, the rudder controller design must provide

ship stability.

As a prelude to obtaining the rudder controller and navigation filter, a state space representation for

the ship must b
e developed from the above non-linear state equations. In general the ship

longitudinal velocity relative to the water could b
e included a
s

a state. However, with the velocity

V fixed, only the heading angle error x
3

must b
e linearized.

Linearization

A continuous-time incremental linear model can b
e

derived by linearizing dynamics with respect to

x
3

a
t

a nominal operating point. Because o
f

the rudder control, x
3

is maintained around zero, and

zero can b
e

used a
s

the nominal operating point. Taking partial derivatives with respect x3, a
t

the

operating point, the following state matrix coefficients are obtained:
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aai = cos x3 9 aga = - x, si
n

x
3 + V cos x
,

as1 =

-sin

X
3 , a.s3 = - x
1 cos x
3

and

b32 = cos x
,

Then the incremental continuous-time linear model may b
e

written in matrix form as:

Ax = A Ax + Bu

where

Ax = [ Axi Ax2 Ax3 Ax4 Ax; Axe Ax7 ſ , where T = transpose

u = [& VI'
and A and B matrices are given b

y

a a
l.
,

0 0 0 0 0

bu 0

a
zi

azz 0 0 0 0 0 b21 0

0 1 0 0 0 0 0 0 0

A =
| a
i

O as 0 0 cosé -sin 6

B = | 0 0

a
s

0 a
ss 0 0 si
n

6 cosé 0 bs2

0 0 0 0 0 -0. 0 0 0

0 0 0 0 0 0 -0. 0 0

with

V

a
u =-LC., , az-V(C.,-1)

V V

* - Fe. . . . tºº.

b.--> V
2

1
1 = --L-C.'s

y ºn-Tº.
*nd with th

e

hydrodynamic coefficient C's a
s given in Appendix A
.
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Note that the term for crosstrack error is arranged in a subtly different way to avoid numerical

instability problems. There are two forcing terms - rudder control and the velocity of the ship. The

ship velocity is fixed. The rudder optimum control input is obtained by solving the Riccati gain

equation for the rudder regulator Appendix B.

5.3 Sensor Model

To meaningfully compare different sensor combinations for the precise navigation problem of

interest, a sensor state variable model is next developed. Among the basic sensors which may be

selected in the simulation are range and pseudorange tracking loops, bearing angle measurements,

and heading sensors.

As an example of the sensor modeling employed in the simulator, consider a basic range sensor

which tracks distance from the ship to a ground-based transmitter. Typically this device is

combined with an onboard heading angle sensor which indicates the ship's orientation with respect

to the geodetic system. Figure 5-4 depicts such a sensor geometry.

The angle x3 is the true heading angle error, and the Ri, 1 < is 4, represent true distances from the

ship to each of the sensors. These true range and angle values are not directly available to the

navigation filter. The navigation filter only has access to these quantities via the navigation sensor

hardware. For example, in the GPS system the ranges are provided as outputs from the delay-lock

loop, and in LORAN-C the third cycle zero-crossing tracker provides the raw sensor output. In

each case, substantial noise and dynamic lag terms can distort the true range values. It is therefore

essential that these effects be included in the simulation models.

Considering the range-sensor model, le
t

Ri, 1 s is 4
,

b
e

the actual distance to the ith sensor. Then

2 2 -

R(t) :=Vº -
*also:39) +

{nship(ſ)
-
"saso.") , 1 s i < 4

where eship(t) and nºhip(t) denote the ship's easting and northing positions a
t time t, respectively.

Similarly, esensori(t) and nsensori(t) denote the ith sensor's easting and northing positions a
t

time t,

respectively. In this expression, eship(t) and nºhip(t) are non-linear functions o
f

the ship along-track

and cross-track States.
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Now consider the sensor output as seen by the navigation filter. Assuming simple first-order

tracking loop dynamics for each of four sensor ranging channels, the sensor state variable model is

as follows:

x, (t
)

= -q, x
, (t)+o, R
.

(1
)

+ w(t) , x(0) = R (0
)

x,(t) = - 0.2x2(t) + q2R2(t) + waſt) , x2(0) = R2(0)

x,(t) = -q,x,(t)+o, R
.,

(t
)

+ waſt) , x
,

(0
)

= R3(0)

x,(t) = -q,x,(t)+o,R,(t) + w(t) , x
,

(0
)

= R4(0)

where x
i,

1 < is 4
,

is the sensor output seen by the navigation filter during measurement

incorporation, oi, 1 < i < 4
,

is the tracking loop time constant, and wi. 1 < i < 4
,

is the tracking

loop atmospheric and/or receiver front-end noise.

For the heading angle sensor the model is likewise given by:

x;(t) = -q,x;(t) + a
s

x 30) + wº(t) , x;(0) = x3(0)

To form a complete model, for both the simulation environment and the navigation filter, the above

state equations must in some fashion b
e combined with the previously derived ship state equations.

To do so requires that the range nonlinearities in the above sensor dynamics b
e linearized about the

nominal ship state solution.

Nominal ship solution

Periodically in the simulation the nominal ship solution is updated and the incremental ship state

TeSet to Zero.

+ Ax*hip

= X*total nominal

where Axship is the incremental solution discussed in Section 5.2. Corresponding to this

division, the sensor range forcing terms are also separated into two terms. The incremental term

provides the desired connection between the ship dynamics and sensor dynamics. In continuous

time, the combined sensor and incremental ship state equations are given by:



Sensor and Ship Continuous-time model

shi ship ship

AX
p

^ship
0 Ax *hip 0

Ul- + + noise

gensor ^hipsaso. *also: *** 0 B,ensor ***

where

* - [8 vi'
T

*** - [R
.

R
.

R
.

R
. 9
]

nominal

The nominal ship state dynamics are treated a
s

a
n unforced system with nonzero initial conditions.

Discretization

From the continuous-time system a discrete-time linear system is obtained by discretization, with a

simulation step size At. In the discrete time system, the incremental ship state vector a
t

time t = k A
t

is given by

Ax (k+1) = Q
B Ax(k) + u(k)

where the state transition matrix Q is given b
y

A At
QD = e

and

At

F-j e^* B d
º

0

where A and B are a
s given in Section 5.2. In discrete time the state equations are given by:

Sensor and Ship Discrete-time model

h
i - -

Ax” (k+1) °,hip 0 Ax”(k)| | Time 0 || u’”
Sensor

-
QD

+

0 T

+ noise

X (k+1) ship, sensor *also: ****) sensor || u”
Figure 5-5 illustrates how in the navigation filter portion o

f

the simulator the above state

CQuations are periodically updated. Updating takes place whenever a significant change in the ship

dynamics matrix is detected, a
s

sensed by changes in ship heading angle, o
r

when a sensor
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Figure 5-5 Sensor and Ship Model Update
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geometry non-linearity threshold is exceeded. In th
e

updating step the nominal ship solution is se
t

to th
e present estimate o
f

total ship state, and the ship incremental state is reset to zero. After ship

dynamics matrix updating, the routine STM is called to convert to a discrete time model. The truth

environment is updated in a similar way.

5.4 Navigation Filter Design

The time-discrete ship and sensor model derived above provides the foundation for the navigation

filter and rudder control design to follow. Noteworthy features o
f

the ship navigation filter

developed for this project include: a
)

sensor signal tracking loop modeling with a
n augmented state

vector, as described above, and b
)

a
n option for navigation filter aiding with rudder position

feedback.

Mirroring the truth environment model, the navigation filter has knowledge o
f

fourteen states. Five

ship states are included: two in the body-fixed frame, sway velocity and yaw rate, and three in the

local waypoint coordinate system frame, alongtrack position, crosstrack error and heading error.

Two water current velocity states, easting and northing, are also estimated. These seven states

portray the ship motion more accurately than would a simpler easting-northing o
r ECEF based

filter. However, a
s discussed previously, such a model entails non-linearities in the system

dynamics natrix, requiring a periodic linearization about the estimated ship trajectory.

The seven remaining states are associated with the sensor system. A
s

discussed above, division o
f

th
e

ship state vector into nominal and incremental terms permits the sensor and ship states to b
e

combined in a linear way. Two o
f

the sensor states model the navigation receiver clock bias and

bias rate, as required in DGPS and differential LORAN-C versions o
f

the navigation filter. The

remaining five states portray sensor smoothing lags, a
s

encountered in the range, pseudo-range,

RACON bearing angle and heading sensor hardware o
f

the navigation system.

Editing the filter segment o
f

the simulation control file, the user is able to configure three filter
variants:

* ranging (up to 4 sites) plus heading sensor,

* Pseudo-ranging (up to 4 sites) plus heading sensor, and
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• range and bearing (2 sites) plus heading sensor.

The simulation control file permits mismatching between the ship and sensor environment

parameters, and the parameters used by the navigation filter.

5.5 Optimal Stochastic Control Design

In the simulation, navigation filter estimates of a
ll ship states are passed o
n to the rudder controller,

whose job it is to control the ship footprint relative to the specified channel boundaries. As

discussed previously, such a control seeks to minimize the CCW, defined a
s

the minimum channel

width that will clear the ship footprint. To b
e viable, such a control solution must tolerate random

disturbances o
f current, wind and model mismatch, making best use o
f

the complete navigation

filter state vector. This is in contrast to deterministic approaches that have been previously

investigated [B-4]. The minimum CCW solution for control involves minimization o
f

a

performance index involving both the ship cross-track error and heading error. In particular, the

control design problem can b
e

cast a
s

a stochastic regulator problem, whose goal is to drive these

waypoint referenced states to zero. This problem formulation is similar to that studied for minimum

energy loss steering in a seaway [B-20). However, in the present setting the controller must

regulate both crosstrack and heading errors, and also provide steering commands for transfer to

new course legs.

To find the ship controller, the following performance index is used:

N-1

- 1 2 2 2

Performance index J. = 2
. X { q33 Ax3(k) + q24 AXA (k

)
+ r. 1 8"(k) }

k=i

N-1

(Ax'09 QAx(k)+u'(k) Ru(k))
k=i

#
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where

Ax = [Ax, Ax2 Ax3 AXA Axs Axe Ax, ſ , where T = transpose

T
u = [& VJ

ſqu 0 0 0 0 O O"

0 q220 0 0 0 0

0 0 qaa 0 0 0 0

Q =| 0 0 0 q440 0 0 R =

0 0 0 0 qss 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The weighting matrix Q consists of diagonal elements q33 and q44, and other arbitrarily small

positive elements along the diagonal to make Q positive semidefinite. This choice of Q implies

emphasis on heading angle error and crosstrack error, possibly with some weighting of sway

velocity and yaw rate. The matrix R for the control input is positive definite with ri
i

for the rudder

control and r22 for the velocity control. But the velocity is assumed to b
e constant, and r22 may b
e

S
e
t

to a very small positive number to maintain the positive-definiteness. Using the above Q and R

matrices the optimal control u is obtained b
y

solving the Riccati equation, Appendix B
.

5.6 Simulator Operation Overview

Prior to closed loop operation with the sensor system and navigation filter, ship hydrodynamic

coefficients were calibrated against published models. Examined were response time delay,

overshoot, damping, and so on. The general vessel parameters considered were a
s follows [B-3]:

length o
f ship 305 meters

width o
f ship 38 meters

hull type tanker, 80,000 tons

speed o
f ship 5.14 meters/second (10 knots)

Beginning with the hydrodynamic coefficients o
f [B-2], values were trimmed to give dynamics* to report (B-3]. Final coefficients a

re

a
s listed in Table 5-1.
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Table 5-1 Hydrodynamic coefficients

coefficients of the current model coefficients taken from [B-2]

Cvo = 0.518 Cvo = 0.518

Cyy' = 0.863 Cvy = 0.863

Cyå = 0.175 CVs = 0.175

Coxo- 5.32 Coxo~ 2.45

Cow = 5.25 Cow = 5.25

Cos = 1.38 Cos = 1.38

A typical indicator of ship performance is the 20/20 Z maneuver test [B-3]. The test can be

described as follows: From a straight line path with rudder amidships, the helm (rudder command)

is deflected 20 degrees to the right. When the heading changes 20 degrees to the right of the initial

heading, the helm is reversed to 20 degrees left. When the heading changes to 20 degrees left of

the initial heading, the helm is reversed to 20 degrees right. The sequence may be repeated many

times. For typical 20/20 Z maneuver data recorded on the simulator model, see Figure 5-6. From

the figure, we can define variables for turn response, heading response, crosstrack response, and

so on. For the exact definition of the variables, refer to [B-3]. The Z test itself reveals many

inherent characteristics of the ship, such as delay between the rudder input and actual response,

heading excursion, overall damping, and so on. Following a preliminary effort at adjustment of the

Cooparameter, the values of Table 5-2 were obtained. Further work on sway velocity dynamics

is warranted.

Table 5-2 20/20 Z Maneuver

final model USCG model [B-3]

Turn Response Variables

Rise time: T20 137 seconds 92 seconds

Slew rate: va, 0.21 deg'sec 0.3 deg/sec

Heading lag. Tvlag 41 seconds 38 seconds

Displacement lag. Tolas 263 seconds 168 seconds

Heading Response Variables

Max heading excursion: \ſmax 23 degrees 25.8 degrees

% heading overshoot: % uſes 15 % 29 %

Track Response Variables

Max crosstrack displacement: Dmax 385 meters 260 meters
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In the closed loop simulations to follow, disturbances are introduced on sway and yaw rate

dynamics, on water current states sources, and on sensor channel outputs. Typically, simulations

are run in two phases, with perfect state knowledge, and with navigation filter state estimates. For

each sensor combination, data is gathered on ship control performance as exemplified by such

measures as ship cross-track and heading error, relative to the currently defined course leg, and by

channel clearance width as a function of accumulated along-track position. Various measures of
navigation sensor performance are also gathered. Sensor faults may be introduced at any point.



6. Performance of Representative Candidate Systems

6
.1 Test Scenarios Overview

From the survey o
f

sensors discussed in Sections 2.1 and 2.2, the candidates chosen

fo
r

evaluation with the simulator were DGPS, LORAN-C, RACON, and microwave. As

shown in Figure 6-1, the basic test scenario consisted o
f

a strait approach segment o
f

1500 meters, a 35 degree course change to port, and another 2500 meters o
f

course

keeping. Ship velocity was 1
0 knots (5.2 meters per second). A diminishing southwesterly

current of 1.5 knots was applied early in each run.

No attermpt was made to replicate geometry specific to a particular waterway. Rather, for

the microwave, DGPS, and LORAN-C systems emitter geometry was established in a

generic way, with all sensors sites lying a
t fixed radial distances from the test area.

Microwave transponders and LORAN-C transmitters were deployed a
t radial distances o
f

2
0 km and 1000km respectively, while GPS sub-satellite points were located 10000 km

from the test site. RACON sites were located a
t

the extension o
f

each course leg, with

RACON1 placed so a
s to support good two-unit geometry in the turn region. Note that for

GPS and LORAN-C the minimal three emitter geometry is assumed, while the microwave

ranging and RACON systems operate with over-determined geometry.

Table 6-1 summarizes those parameters common to a
ll

the test scenarios. To simulate the

effect o
f wind and unmodeled hydrodynamical forces o
n

the ship, random disturbances

were introduced o
n

the ship sway and yaw rate axes. The higher o
f

the two disturbance

level scenarios was selected to model storm conditions likely to b
e

encountered only

infrequently in river and harbor areas. The low-disturbance scenario is more typical o
f

*Very-day pilotage conditions.



UHF/Microwave r = 20km
LORAN C r = 1000km

DGPS r = 10000 km

Remote
Emitter
Sites

2500 meters

1500 meters

Figure 6-1 Site Geometry
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Table 6-1

Common Scenario Ship and Sensor Parameters

Ship Parameters

sway axis velocity disturbance, high setting .32 meters/second, 1 sigma

sway axis velocity disturbance, low setting ,097 meters/second, 1 sigma

yaw axis rate disturbance, high setting .11 degrees/second, 1 sigma

yaw axis rate disturbance, low setting .035 degrees/second, 1 sigma

longitudinal ship velocity 5.14 meters/seconds (10 knots)

easting and northing current components .5 meters/second

Sensor Parameters

heading sensor output standard deviation 0.5 degrees, 1 sigma

heading sensor time constant 1 second

heading sensor navigation filter sample rate 1 Hz

user clock drift rate 1 nanosecond/second, 1 sigma

drift rate process correlation time 100 seconds
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Parameters common to a
ll

sensor scenarios are listed in Table 6-1. The simulated heading

sensor dynamics/noise model consists o
f

a first-order lowpass filter o
f

one second time

constant forced b
y

the true ship heading. A white noise term is also introduced such that the

sensor jitter is 0.5 degrees. The heading sensor output is sampled b
y

the navigation system

a
t

a 1 Hz rate.

For LORAN-C and DGPS systems, the simulation environment also provides a two-state

clock model. The clock rate state is Gauss Markov, with a time constant of 100 seconds

and a clock drift rate standard deviation o
f

one nanosecond per second. This clock model is

mirrored in the ship navigation filter.

6.2 Tests With Perfect Navigation State Knowledge

Even with perfect knowledge o
f ship position, velocity, heading and yaw rate states, some

deviation from the desired waypoint trajectory is unavoidable. Therefore, before beginning

specific sensor configuration runs, it was important to determine the aggregate

contribution, to ship control error, from wind and water disturbances and ship handling.

To this end the optimal ship controller was driven with a perfect ship navigation state

vector, under a variety o
f

disturbance conditions. This performance baseline is useful in

establishing a
n overall error budget for ship navigation and control systems.

During this preliminary testing phase, the course leg switching point was optimized to
obtain best channel clearance width (CCW) performance in the turn region, and baseline

values for sway and yaw rate disturbances were established.

Figure 6-2 shows disturbance-free left and right clearance width results obtained after

switch-point optimization. The graph ordinate is accumulated along-track position o
f

the

ship, and the abscissa is the minimum channel width needed to just clear the extremity o
f

the ship. As expected, during the turn approach and after turn recovery the clearance width

values are nearly the same a
s

the ship half width, 1
9 meters. In the turn region however,

the right clearance width must b
e

increased to 150 meters, and the left clearance width must

b
e

increased to 80 meters to avoid boundary contact.
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Figure 6-3, depicts a typical run with the lower of the two disturbance levels of Table

6-1. Even with perfect knowledge of ship state, increased clearance values are observed.

Figure 6-4 is a typical channel clearance plot with the larger ship disturbance level. The

clearance values required in the turn region are similar to those in the no-disturbance case,

but turn approach and recovery regions show substantial increases in the channel width

needed for safe passage. One way of further quantifying this behavior is to tabulate

cumulative probability distributions for channel clearance values at sample along-track

points, as obtained by passing the maximum of left and right clearance values at each

sample point to the cumulative distribution routine. Because the distributions are likely to

differ in turn approach and recovery regions, they are computed separately in each region.

Using a five second sample interval, each distribution is the result of several runs and

thousands of data points. Distributions are tallied for high and low ship disturbance cases.

Figure 6-5 compares the channel clearance width cumulative distributions in the pre-turn

region, for both low and high disturbance conditions. For the low disturbance runs 95% of

the clearance width samples are under 28 meters. For the high disturbance group the 95%

clearance half width is 55 meters. Higher or lower probability thresholds can be estimated

from these curves. Not shown is the distribution for zero ship disturbance, which consists

of a step jump to probability 1.0 at the 19 meter ship half-width.

Figure 6-6 compares the channel clearance width distributions in the turn recovery

region for both disturbance conditions. The 95% values are nearly the same as in the pre

turn region. However, as will be seen in later simulation runs, turn recovery requirements

are generally greater when the ship is steered with imperfect sensor data.

6.3 Differential GPS Performance

As discussed in Section 2.2.1, DGPS user and reference station equipment can operate in

code mode and integrated Doppler mode. The most accurate results are obtained with both

sites in the integrated Doppler mode. However, in this report we shall assume that aboard

ship the less accurate equipment is available. Furthermore, delta range data, useful in

estimating velocity states, will be ignored. Thus, the DGPS configuration investigated

constitutes the bottom rung in the DGPS equipment ladder. In this configuration the sensor
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error budget is dominated by code tracking loop noise, multipath and tracking loop

dynamical errors.

Corresponding to operation with a received carrier-to-noise ratio of 40 dB-Hz, and a static

tracking loop jitter of 5 meters, the simulated code tracking loop time constant was set at

0.125 seconds. This loop model is employed as well in the ship navigation filter, where an

augmented state vector is employed for compensation purposes.

Satellite visibility in certain areas of the waterway system may restrict the user to fewer than

four satellites. For this reason a
ll

simulations are carried out with just three satellite

channels. The navigation filter is aided with the previously described heading sensor, a
s

well a
s with rudder position knowledge. All data is sampled a
t

a one Hz rate.

Figures 6-7 and 6-8 are CCW plots o
f typical runs, under low and high disturbance

conditions respectively. These are generally similar to those obtained for operation with

perfect ship state knowledge. It is very instructive to compare cumulative distributions for

CCW, obtained over several runs, against the perfect state knowledge case. These

comparisons in before and after turn regions are a
s shown in Figures 6-9 and 6-10, with

perfect-state distributions depicted a
s lighter plot lines. Particularly in the before turn

region, the the DGPS distribution tracks very closely with the perfect-state distribution. At

the 95% level a
n

increase o
f

about five meters in CCW is contributed b
y

the DGPS sensor

system over the perfect-state case. The turn recovery region distributions, Figure 6-10,

are less good. Although the performance loss attributable to the sensor system is only

about 2 meters for the low disturbance condition, a 1
6

meter increase in CCW is observed

in the large disturbance scenario.

In summary, the DGPS system contributed a modest increase in CCW under most

Operating conditions. However, dynamical performance could b
e greatly improved upon in

th
e

turn recovery region b
y

employing delta range o
r integrated Doppler GPS data in the

navigation filter.

6.4 Differential LORAN-C Performance

A
s

with the GPS system, LORAN-C may b
e operated in a differential mode. The

Contribution o
f

the reference station corrections to the overall error budget will b
e

neglected. This assumption may b
e

more problematical for LORAN-C, since local grid
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warp conditions have proven difficult to calibrate in river and harbor areas. The magnitude

of these errors is much larger than such GPS site dependent errors as multipath.

Operating in the "rho-rho" mode, the navigation filter of the simulator extracts clock bias

and clock rate errors from the simulated LORAN-C sensor data. To facilitate certain

comparisons between GPS and LORAN-C, the simulated tacking loop jitter was set to the

GPS value of 5 meters. For an assumed 20 kHz SNR of +10 dB this corresponds to a

tracking loop time constant of about 14 seconds. As previously discussed in Section 5,

the fourteen state elements of the filter include LORAN-C signal tracker dynamics and, as

for GPS, heading reference data and rudder knowledge is available to the filter at a one Hz

sample rate.

Because of the substantial time constant of the simulated LORAN-C tracking loops, special

attention was given to the overall stability of the closed loop ship steering control. It was

found that some degree of both rudder knowledge and tracking loop dynamics, within the

navigation filter, was essential for stabilization of the ship steering control loop. The

system as a whole was unstable in the absence of rudder position knowledge. This may be

an important consideration in the design of the human pilot interface. Although in practice

the human pilot knows the rudder position at a
ll

times and may tend to compensate for

sensor lags with this knowledge, ship navigation data presented to the pilot could b
e pre

compensated, a
s is done in the present simulation.

To add realism to the simulations, in the final LORAN-C runs a mis-match between the

environment and navigation filter LORAN-C tracking loop time constants was utilized, 1
4

seconds in the environment and 3.5 seconds in the navigation filter. This mismatch

resulted in a small loss in performance over the matched case. However, in all runs perfect

rudder knowledge was employed by the navigation filter. Figures 6-11 and 6-12 show

typical results for CCW, for low and high disturbance conditions respectively. Both plots

exhibit a good deal o
f drift, indicative o
f poorer velocity estimates within the navigation

filter and a consequent loosening o
f

the ship control loop.

Turning to the cumulative distributions for channel clearance width prior to the turn,

Figure 6-13, a substantial loss in performance over the perfect-nav case is observed.

Under the low disturbance condition the 95% half width has increased from 28 to 43

meters, and with high ship disturbances the increase is from 55 to 75 meters. As shown in
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Figure 6-14 the performance is still poorer in the turn recovery region, where the 95%

half width has increased to 85 meters in the high disturbance case.

As these tests clearly suggest, a specification of receiver navigation solution jitter and

update rates is insufficient for predicting ultimate closed loop performance. In particular,

although sensor geometries, user clock models, tracking loop output standard deviation

characteristics and sensor sample rates were identical in the above DGPS and LORAN-C
examples, achieved control performances differed greatly. A complete sensor specification

must therefore include a tracking loop equivalent model portraying actual raw sensor

dynamics.

6.5 RACON System Performance

As discussed in Section 2.1, two variants of the RACON system are of interest, one

using the standard ship radar and the other requiring a more precise ship interrogator and

monopulse receiving antenna. Because of it
s

wider applicability, emphasis was placed on

the less accurate o
f

these RACON systems.

The basic RACON system is assumed to provide a
n azimuth angle accuracy o
f

1.5 degrees,

and a ranging accuracy, including the effects o
f RACON jitter, o
f

20 meters. Tracking loop

time constants for both azimuth and ranging channels was set to one second. The sample

rate a
t azimuth and range loop outputs was set a
t

1 Hz. The reader should refer to Figure

6-1 for the RACON site geometry. Note that the ship navigation filter processes data from

both RACON's throughout the passage. Additional inputs are heading sensor and rudder

position.

Figures 6-15 and 6-16 show typical CCW results for low and high disturbance

conditions, respectively. Generally there was evidence o
f

some low-frequency drift in a
ll

the runs, particularly early on where the GDOP was poor, and in the early portion o
f

the

turn a
s well. Figures 6-17 and 6-18 show the cumulative distributions for all runs, for

both disturbance conditions. The loss in performance from the perfect-state case is most

significant in the pre-turn distribution, Figure 6-17. The distributions in the turn recovery

region are much tighter, reflecting improved geometry and the fast dynamics o
f

the

RACON system.

In conclusion, the RACON system with standard ship radar, when properly interfaced to

the navigation computer, and operating with good geometry, was similar to the least
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accurate DGPS system. However, given the angular accuracies delivered by the standard

ship radar, siting geometry is a critical factor. A more precise monopulse ship interrogator

would greatly ease the geometric problems of the RACON system.

6.6 Microwave Performance

As discussed in Section 2.1.1, ground based ranging sensors are commonly available in

UHF and microwave variants. The microwave versions have a more limited range but are

more accurate. All have quick response time and good dynamical performance. The range

tracking parameters chosen for simulation are representative of the microwave systems.

Tracking loop time constants were set to one second, and loop output jitter was set to 1

meter. Range loops were sampled by the navigation filter at a 1 Hz. rate. Three

transponders were used in an overdetermined solution and, as shown in Figure 6-1, the

layout of the three microwave transponder sites was nearly ideal. In practice, siting

difficulties may preclude such good geometry.

Not surprisingly, the overall performance of the simulated microwave system was

excellent. Figures 6-19 and 6-20 show the low and high disturbance CCW results for

two typical runs. Figures 6-21 and 6-22 show the tight distributions obtained before

and after the turn, under conditions of low disturbance. Insufficient runs were made under

the high disturbance condition to obtain reliable cumulative distributions, but the quick

response of the microwave sensor gave very good results in this case.
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7. Conclusions and Directions for the Future

As demonstrated in this report, precise control of the ship footprint is ultimately limited by

ship controllability factors, which are independent of the sensor system. Channel clearance

width distributions were especially good for the DGPS and microwave candidates, and

when operated with good geometry, the RACON system provided adequate steering

performance. The inadequacy of simple position fixing specifications was seen in the

performance of the LORAN-C system. Tracking loop sensor dynamical models and a

closed loop steering simulation provide a more complete picture of what can be expected

from each sensor combination.

Reliability and integrity factors must be a part of the sensor selection process. A local

monitor/calibration receiver can provide a warning to the user of an out-of-tolerance

condition, thus enhancing system integrity. For two of the candidates, DPGS and -

differential LORAN-C, this is a natural by-product of the differential calibration process.

Sensor reliability can be achieved by a combination of techniques, beyond the obvious

measure of increasing the number of transponder/transmitter sites. Tolerance to

unanticipated signal outages can be improved by utilizing secondary navigation sources, or

by providing a more stable receiver clock. Although signal outage performance has been

briefly explored for DGPS, a comprehensive range of outage scenarios across the candidate

mix should be investigated. Further tests, under less ideal conditions, can be explored with

the present simulation system.

The integration of precision navigation data into the ship radar and map displays remains a

very important avenue for further exploration. To approach the closed loop ship footprint

control distributions predicted in the simulation will require very careful design of the man

machine interface. An "aided-pilot" feature could be a useful adjunct to this interface. Such

a system could monitor present ship state and helm commands, and warn of a potentially

hazardous condition. Much of this system integration must be done on a full-fledged ship

simulator. However, simulators of the type employed in this report provide an economical

means for studying the efficacy of simple pilot displays, and their interaction with rudder

control and sensor functions. Although VAX computers were employed in the present

work, a high performance 32-bit workstation is capable of supporting the ship and sensor

dynamics environment, navigation filtering software, and a simplified pilot display.
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Advancing our knowledge of confined waterway visual pilotage performance and vessel

steering response should also be pursued. Operating in it
s integrated Doppler mode, the

DGPS system provides a low-cost means o
f gathering this fine-grained data. A DGPS

experiment aimed a
t

several vessel types and pilotage situations, is recommended. A

secondary objective o
f

this activity would b
e

the gathering o
f

DGPS signal

reliability/blockage data.

Finally the specification o
f required navigation accuracies in the Federal Radionavigation

Plan (FRP) should b
e

examined in the context o
f

closed loop steering control and precision

pilotage, and new standards for the characterization o
f

sensor dynamical performance

should be established.
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Appendix A

A.1 Hydrodynamic coefficients

For more information, refer to [B-9].

derivative of transverse specific force coefficient with respect to ship's

space angular rate

derivative of transverse specific force coefficient with respect to yaw angle

derivative of transverse specific force coefficient with respect to rudder
angle

derivative of specific torque coefficient with respect to ship's space angular
Tate

derivative of specific torque coefficient with respect to yaw angle

derivative of specific torque coefficient with respect to rudder angle
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Appendix B

B.1 Riccati Equation

The Riccati equation can be solved by many methods - recursive method, eigenstructure

assignment, and numerical computation. Backward and forward recursive method provides

an optimal gain sequence but requires rather extensive off-line computation and additional

coding complexity which must generate a predicted destination in advance and go backward

in time from a destination point to a current location for gain computation. Particularly,

during a turning predicting an intermediate destination point is difficult. Since the turning

involves rotation of the coordinate frame. On the contrary, the eigenstructure method does

not involve off-line backward iteration for a sequence of gain matrix. It is a purely algebraic

method and furthermore provides a stable solution. However, it only yields a steady state

gain which is suboptimal. The numerical computation, as it
s

name implies, cranks the

Riccati b
y directly substituting a
n initial guess into the equation and repeats iterations until

desired error accuracy is achieved. It also yields the same suboptimal gain a
s

the solution o
f

the eigenstructure method.

In practice, the suboptimal gain can b
e

used without much degradation o
f

the system

performance. As we assumed in Section 5.5, the destination is not clearly set u
p

in
advance. Instead, our emphasis is to regulate crosstrack and heading angle errors a

s small

a
s possible with respect to a linear segment o
f

the trajectories. To achieve the regulation,

we mostly need the suboptimal gain sequence, not the off-line optimal solution. In fact, in

our study the system has responded well to the suboptimal gain sequence.

Consider the Riccati solution using the eigenstructure method which provides the

theoretical suboptimal solution. We will discuss this method and compare it to the direct

numerical computation in Section B.2.

A solution sequence S(k) o
f

the discrete-time Riccati equation is given by

S(k) = q
."

S(k+1)-s(k+1)T(r's(k+1)T+R)'T's(k+1)]or Q

where q is the state transition matrix, T the input matrix, Q the weighting matrix for states,

and R the weighting matrix for the inputs a
s shown in Sections 5.4 and 5.5.



Then the gain sequence G(k) is obtained from the Riccati solution sequence S(k) as

follows:

G(k) = (ſ"s(k+1)T+R)'ſ's(k+1)*

The steady state solution of S(k) is obtained as k approaches to infinity. Hence,

S(co) = lim S(k)
k—ºoe

Then the steady state gain G = G(co) becomes

G=(I's(-)rt R)' I's(-)o

Then the suboptimal control input u(k) to the controller is given by

u (k) = - G3(k) , where 3(k) is an estimate of x(k).

B.2 Coding of Riccati solution

Generating the Riccati gain sequence requires several subroutines, especially, subroutines

from EISPACK, in the eigenstructure method. Initially the eigenstructure method for the

Riccati solution was implemented using FORTRAN in a CYBER main frame computer.

Main reason for using the CYBER was lack of proper softwares for eigenvalue and

eigenvector matrix computation in mini- or micro-computer system. Because this method

requires the formulation of the Hamiltonian matrix H and computation of eigenvalues and

modal matrix for the H. However, main problem we have observed was numerical

instability due to unstable eigenvalues in the ship state variables x1, x2, and x3. Since the

ship model contains an unstable state and a pure integrator, the eigenvalues of the H for the

discretized linear system a
re

clustered near th
e

unit circle in the complex Z-plane.

Furthermore, because o
f

round-off errors accumulated during computation, it has been

detected that eigenvalues o
f

the H cross the unit circle and thus cause instability in

computation itself a
s well a
s generate unstable system gains. Careless coding will yield a
n

unreliable gain sequence. To correct the problem, sorting in descending order in absolute

values o
f eigenvalues is needed and based o
n

the ordering, swapping o
f

columns o
f

the

eigenvector matrix is required. EISPACK subroutines generally provide a modal matrix

which stores the real and imaginary parts o
f eigenvectors in a special form, the column



swapping is very important. If the swapping is not properly done, then the result is not

reliable.

Because of the above reasons, the eigenstructure method was implemented but later

replaced by direct numerical computation of the Riccati solution. The direct computation

does not require the formulation of the Hamiltonian and, hence, computing and sorting

eigenvalues. Nowadays, use of microcomputers is increasingly popular and economical.

But not many numerical analysis software packages are available in the microcomputer

compared to the main frame computer system. Clearly, the direct numerical computation is

a better approach than the eigenstructure method which requires many sophisticated

subroutines for computing eigenvalues and eigenvectors. In our study the controller has

been implemented based on the direct computation approach using Clanguage.

If we carefully examine the Riccati equation in Section B.1, there is a steady state solution

S(co) ask approaches to ce
.

Since what we need is the steady state solution, we start

solving the equation recursively with a
n arbitrary positive definite matrix S(0). The

numerical computation method is slow without employing any acceleration scheme for

convergence. However, the coding is simple and straight forward. It yields a reliable result

compared to the frequently unstable eigenstructure method. To preserve the symmetry in

S(k) a
t

each iteration step, S(k) and S(k)ſ are summed together and averaged.

B.3 Reduction o
f computation time

Computation o
f

the Riccati gain sequence is the most time consuming part in the

simulation. From the simulation study, it has been learned that the ship dynamics do not

change significantly if there are no abrupt changes in the environment o
r

n
o turning in a

foreseeable period. Hence, frequent gain updates are unnecessary. To alleviate the

computational burden o
f updates, changes in heading angle and crosstrack errors are

constantly checked. If changes exceed a certain threshold, then evaluate a new dynamics

and corresponding gains.
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Appendix C

Ship Simulation Source Code

1) Brief Listing of Functions and Resident Functions
2) Source Code
3) Expanded File and Function Listing

4) Control File Listing

5) Control File Description
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File
array.h

COIT.C

€St.C

init.c

output.c

ship.c

ship.h

Store.C

Store.X

utils.c

Functions

controller
environment
Sensorsimulator
EnvironmentSTM
UpdateSTM
riccati

CompressPhiCamma
ExpandGain

estimator

extrapolate
update
NewObservation
ComputeResidual
EstimatorSTM
NominalNMeasurements
CheckFilterStatus
RestartPilter
Update()
ComputeLops

InitConstants
ReadControlRile
Sizes

Create Memory
InitArrays

output
PrintPesidual

main
InitAll

mondecode

MType
cmdln
help

Brief Listing of Files and Resident Functions

Commen IS

array structure

environment routines

estimator routines

initialization functions

send results to output

start of program

ship defines and
structure templates

finish

external variable

storage

external declarations

utilities
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way.c

ACtoEN
AngleSense
NormalizeAngle
noise
fe
decode

CheckWaypointStatus
ReadWaypoint
ProcessMap
RotateShip

waypoint handling
routines
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Array.h

struct array {

char *name; /*
int p; /*
int n; /*
double *_a: /*

};

double get (), put ();

array name */
number of rows " /
number of columns "/
type double pointer to linear array */

struct array *add (), * sub (), * copy (), *dim (), *ident (), * inv ();
struct array *mul (), *neg (), *scal (), *tpos (), *zero ();

extern FILE *inpfp, *outfp;
define MULTMP 256

define vector (p, n) matrix (p, n)
define scalar (p) (* (p->_a))
define row (r) (r->p)
define col (c) (c->n)
define base (a) (a->_a):

define matrix (p, n) (* (p->_a-n))
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Con.c

include <stdio. h
include <math. h
include "array. h"
include "ship. h":

# include "store. x"

/****************************************************** * * * * * * * * * * * * * * * *
* Functions contained in this file are:
*
* controller () - compute control input U
* environment () - update plant
* Sensorsimulator () - create sensor readings for estimator
+k EnvironmentSTM () - update regulator phi
* UpdatesTM ()

- update given state transition matrix
+ riccati () - compute Riccati gain
* CompressPhi(Gamma ()

- convert phi and gamma to 7x7 and 7x2
* ExpandGain () - expand gain to size needed
* ninv () - inverse with pivoting
*

*************** * * * * * * * * * * * * * * * ********************** * * * * * * * * * * * * * * * * * * */

/*********controller” +“”, “ . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

double LastClock=0.0;

/*
* Compute controlling 'optimal' input U = -K×x.
* For these runs ship velocity is held constant.
* NOTE: GAIN IS ALREADY NEGATED
+/

Controller ()
{

if (TrueFlag) {

mul (true. ship. gain, true. ship. x, true. ship. u);
vector (true. ship. u, 1) = true. ship. vel;

} else {

mul (nav. ship. gain, nav. fil. x, true. ship. u);
vector (true. ship. u, 1) = nav. ship. vel;

/* * * * * * * * * Environment *** ******************* * * * * * * * * * * * * * * * * * * * * * * * * * */
+

'. Update the plant.

*re-rºo
int i ; /* loop incrementor */
double p; /* phi element in noise calculation */

/*
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* Check need for plant state transition matrix update
*

if ( fabs (HeadingError (true. ship. x) –LastPHE) >HeadingThreshold
| | fabs (CrossTrack (true. ship. x) -LastPCT) >CrossTrackThreshold) {

EnvironmentSTM ();
}

/*
* Update plant: X (n+1) = PHI*X (n) + GAMMA*U (n) + noise
*/

mul (true. ship. gamma, true. ship. u, timp2);
mul (true. ship. phi, true. ship. x, timpl);
add (tmpl, timp2, true. ship. x);

/*
* Add disturbances to:
+ Sway Velocity
+ Yaw Rate
* East Current
ºr North Current
* Clock Drift
*/

p = get (true. ship. phi, 1, 1);
SwayVelocity (true. ship. x)

+= noise ( (one-pºp) *true. ship. variance [0]);

p = get (true. ship. phi, 2, 2);
Yawkate (true. ship. x)

+= noise ( (one-pºp) *true. ship. variance [1]);

p = get (true. ship. phi, 6, 6);
vector (true. ship. x, 5)

+= noise ( (one-pºp) *true. ship. variance [2]);

p = get (true. ship.phi, 7, 7);
vector (true. ship. x, 6)

+= noise ( (one-pºp) *true. ship. variance [3]);

p = get (true. ship. phi, 9, 9);
ClockDrift (true. ship. x)

+= noise ( (one-pºp) *true. ship. variance [4]);

/********* Sensorsimulator * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Simulate sensor measurements for use in estimator. Sensor lags
and noise are included, if desired.

Sensorsimulator ()

int i, /* loop increment */

double
do, /* cross track position difference */
da, /* along track position difference */
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ClockBias, /* current clock bias */
RawMeasurement, /* measurement without lag or noise */
Noisevalue /* current noise value */

;

/*
* Compute raw range measurements
*/

for (i-0; i3SensorChannels; ++ i) {

switch (sensor[i] . type) {

Case RANGE:

dc = CrossTrack (true. ship. x) - sensor[i]. cross;
da = AlongTrack (true. ship. x) - sensor [i]. along;
RawMeasurement = sqrt (dc” dc + da” da);
ClockBias = LastClock;
break;

Case HEADING: /* heading error for now */
RawMeasurement = HeadingError (true. ship. x);
ClockBias = 0.0;
break;

Case BEARING:
dc = sensor [i]. cross - CrossTrack (true. ship. x);
da = sensor[i]. along - Along Track (true. ship. x);
RawMeasurement = atan2(dc, da)

- HeadingError (true. ship. x);
ClockBias = 0.0;
break;

default:
fprintf (ErrorFile,

"Sensorsimulator: unknown measurement type $d for element = %d\n",
sensor[i] . type, i) ;

/*
* Simulate sensor lags and add noise:
*

* X (k+1) = PHI*X (k) + GAMMA*RawMeasurement + NOISE
*/

if (LagFlag) {

Noisevalue = noise (

(one – sensor[i].phi “ sensor[i]. phi) * sensor[i]. Envvar

Measurement (i)
= sensor[i]. phi “ Measurement (i)

+ sensor[i]. gamma” (LastFawMeasurement [i]-ClockBias)
+ Noise Value;

} else {

Measurement (i) = Rawmeasurement;



}

LastRawMeasurement [i] = RawMeasurement;
}

LastClock = Clock (true. ship. x) *c;

/* * * * * * * * * EnvironmentSTM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Update environment's state transition matrix
*/

EnvironmentSTM ()
{

double
Sinx3, /* sin (HeadingError) */
CosX3; /* cos (HeadingError) */

/*
* update A & B matrices and call RICATTI
*/

Sinx3 sin (HeadingError (true. ship. x));
CosX3 = cos (HeadingError (true. ship. x));
put (true. ship. a, Cos2(3, 4, 1);
put (true. ship. a,

-SwayVelocity (true. ship. x) *SinX3+true. ship. vel"Cos:(3, 4, 3) ;
put (true. ship. a, -Sin X3, 5, 1);
put (true. ship. a, -SwayVelocity (true. ship. x) *CosX3, 5,3);

put (true. ship.b, Cosk3, 5, 2);

UpdateSTM (&true. ship);

LastPHE = HeadingError (true. ship. x);
LastPCT = CrossTrack (true. ship. x);

STMStatus ||= 1;

/********* UpdateSTM * * * * * * * * * * * * * * * * * * * ***************** * * * * * * * * * * * * **/

/*
* Update given state transition matrix
*/

UpdateSTM (s)
struct ship *s;
{

int if

/*
* Compute state transition matrix and gamma

* NOTE: timp3 = psi
*/

scal (s->a, TimeStep, timpl);
copy (s->e, tmp3);
for (i-60; ix–2; i--) {
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mul (tmpl, tſmp3, timp2);
scal (tmp2, 1.0/(double) i, tſmp2);

add (s->e, tmp.2, tmp3);
}

mul (tmpl; tımp3, timp2);

add (s->e, timp2, s->phi);
mul (tmp3, s->b, tmpl);
scal (tmpl; TimeStep, s->gamma);

if (TrueFlag) {

if (fabs (HeadingError (true. ship. x)) >= RichEThreshold| fabs (CrossTrack (true. ship. x)) >= RicCTThreshold) {

riccati (&true. ship);
}

} else {

if (fabs (HeadingError (nav. fil. x)) >= RichEThreshold
| | fabs (CrossTrack (nav. fil. x)) >= RicCTThreshold) {

riccati (&nav. Ship);

/********* riccati * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
Compute optimal gain via Riccati equation

riccati (s)
struct ship *s;
{

int if /* loop incrementor */
struct control “c;
struct array *ninv ();

c = &control;

CompressPhiCamma(s); /* convert phi and gamma to 7x7 and 7x2 */

/*
* The following code implements
ºr

* P (k+1) = Q + PHI ' "P(k)
+ * [PHI – GAMMA * inv [R + GAMMA' +P(k) *GAMMA)
ºr * GAMMA' *P (k) *PHI
+

* where P is the performance index, and Q and R are performance
* indices. To maintain symmetry P is recomputed as:
+

*r P = (P + P')/2
+

+k/

ident (c->p);
for (i-1; i3-100; i----) {
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mul (c->gammat, c->p, timpl); /* TMP1 = GAMMA' +P +/
mul (tmpl, c->gamma, timp2); /* TMP2 = GAMMA' *P*GAMMA */
add (tmp2, c->r, tmpz); /* TMP2 = R+GAMMA' *P*GAMMA */
ninv (tmp2, tmp3); /* TMP3 = inv (TMP2) */
mul (tmpl, c->phi, tmp2); /* TMP2 = GAMMA' "P+ PHI #/
mul (tmp3, trap2, timpl); /* TMP1 = inv () *GAMMA' +P*PHI*/
mul (c->gamma, tmpl, tmp2); /* TMP2 = GAMMA*TMP1 */
sub (c->phi, timp2, timpl); /* TMP1 = PHI-GAMMA* inv () */
mul (c->phit, c->p, tmp2); /* TMP2 = PHI ' 'P */
mul (tmp2, timpl, timp3); /* TMP3 = PHI '+P*TMP1 */
add (c->q., tmp3, c->p); /* P = Q + TMP3 */
tpos (c->p, tmpl); /* TMP1 = P : */
add (c->p, tmpl. c->p); /* P = P + P' +/

scal (c->p, 0.5, c->p); /* P = P/2 */
}

/*
* Finally, we compute the gain:
*

* GAIN = inv (GAMMA' *P*GAMMA + R) * GAMMA' *P*PHI
*/

mul (c->gammat, c->p, tmpl); /* TMP1 = GAMMA' +P +/
mul (tmpl, c->gamma, timp2); /* TMP2 = GAMMA "*P*GAMMA */
add (tmp2, c->r, timp2); /* TMP2 = R + GAMMA "*P*GAMMA */
ninv (tmp2, timp3); /* TMP3 = inv (TMP2) */
mul (tmpl. c->phi, timp2); /* TMP2 = GAMMA' A P+ PHI #/
mul (tmp3, tmp2, c->gain); /* GAIN = inv () *GAMMA' "P"PHI #/

put (c->gain, 0.0, 2, 5);
neg (c->gain, c->gain); /* for U = -KX later +/
ExpandGain (s); /* expand gain to size needed */
STMStatus ||= 4; /* indicate a Ricatti call ”/

/********* CompressPhiCamma * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/

/*
* Compress phi and gamma to basic 7x7 and 7x2 size for ricatti ().
*/

CompressPhiCamma(s)
struct ship *s;
{

int
i, /* row loop incrementor */j - /* column loop incrementor */

-
º

for (i-1; i.<=Shipstates; ++i) {

for (j=l; j<=Shipstates; ++j) {

put (control. phi, get (s->phi, i, j), i, j);
}

}

tpos (control. phi, control. phit);

for (i-1; i3-Shipstates; ++i) {

put (Control. gamma, get (s->gamma, i, 1), i, 1);
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put (control. gamma, get (s->gamma, i, 2), i, 2);
}

tpos (control. gamma, control. gammat);

/* * * * * * * * * Expandgain *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Expand gain to 2x9 (true state feedback) or 2x14
* (estimated state feedback), as required.
*/

Expandgain (s)
struct ship *s;
{

int j; /* column incrementor */

for (j=1; j<=Shipstates; ++j) {
put (s->gain, get (control. gain, l, j

j
)

put (s->gain, get (control. gain, 2, j)

/********* ninv *** * * * * * * * * * * * * * * * * * * * * * * ********************** *******/

/*
* New matrix inverse. Find square matrix inverse using the
* Gaussian row reduction with column pivoting.
*/

struct array *ninv (a,b)
register struct array *a, *b,
{

register int i, j, n, order;
register double

Z, /* diagonal value */
*adp, /* a diagonal pointer */
*acp, /* a column pointer */
*anp, *bnp, /* [ab) n-row place-holder */
*arm, *brm, /* [ab) current max row */
*aro, *bro, /* [ab) current origin row */
*arp; /* a row pointer */

#ifndef FAST
if (row (a) = col (a)) {

fprintf (stderr, "ninvi non-square matrix %s. \n", a->name);
exit (0);

}

if (a-0 || b-0) {

fprintf (stderr, "ninvi null array pointer. \n");
exit (0);

}

#endif

order = col (b) = row (b) = col (a) ;

ident (b);
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adp
bnp

acp = anp = base (a);
base (b);

for (n=1; nº=order; ++n, adp-=order+1, acp++, anp+=order, bnp+=order) {

aro = arm = arp = adp;
arp += order;
bro = bnp;

/* pick up pivot element */
for (i-n; i3Order; i-4, arp+=order)

if (fabs (*arp) > fabs (*arm))
arm = arp;

if ((*arm) =0.0) {
fprintf (stderr,

"ninv. zero elements in one column. \n");
exit (0);

}

/* if i row not max, then interchange */if ( (*arm) = (*aro)) {
i-n;
for (; i3-order; it--) {

z = *arm;
*arm---|- = *aro;
*aro-F4 = z;

}j = arm – aro;
brm = bro + j;
for (i-1; i3-order; i----) {

z = *brm:
*brm++ = *bro;
*bro-H+ = z;

}

/*
* Reduce the remaining n-1 rows with in [AB] row n.
*/

for (i=1, arm=acp, arp=base (a), brm=base (b); i3-order;
++i, arm---order) {

if (i-n) { arp += order; brm += order; continue; }

z = (*arm) / (*adp);
for (j=l, aro=anp, bro-bnp; j<=order; ++j) {

*arp44 –= (*aro-1-4) *z;
*brm++ -= (*bro-H4) +z;

}

/*
* Normalize n_th row in [AB] matrix with element A (n, n).
*/

for (n=1, adp=base (a), bro-base (b); nº=order; n++, adp+=order-1) {

z = *adp;
for (i-l; i3-order; i--4-)

*bro-H+ /= z;
}

return (b);

C-12



Est.c

include <stdio.h>
include <math.h>

include "array. h"
include "ship.h.":

# include "store. x"

# define RUDDER
# undef FAILURE
# undef RESETP

/******** * * * * * * * * * * * * * * * * * * * * * * * * * * * *********************** * * * * * * * * * * * *
* Functions contained in this file are:
+

* estimator () - executes ship Kalman filter *
+ extrapolate () - extrapolates estimated ship state
+ update () - update estimated ship state
* NewObservation () - observation for i 'th measurement
+ ComputeResidual () - residual for i 'th measurement
+ EstimatorSTM () - updates filter phi
*r NominallMeasurements () - measurements based on nominal state
+ CheckFilterStatus () - check threshold levels, etc.
+ RestartFilter () - prepare filter for transient, etc.
* Updateo () - recompute Q
* Computedops () - - compute some DOP values
+

*********************************************************************/

/********* estimator *** ************* **************************** *****/

/*
* Executes the ship's Kalman filter.
*/

estimator ()
{

CheckFilterStatus ();
extrapolate ();
update ();

/********* extrapolate *** ********************************************/

/*
* Extrapolate state and covariance TimeStep seconds.
*/

extrapolate ()

int i ;

/*
* Form proper control input for the filter
*/ -

# ifdef RUDDER

vector (nav. ship. u, 0) = vector (true. ship. u, 0);
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# else
vector (nav. ship. u, 0) = 0.0;

# endif
vector (nav. ship. u, 1) = vector (true. ship. u, 1);
if (Sensorflag) {

NominalMeasurements ();
}

/*
* Extrapolate nominal state: XNOM = PHI*XNOM
* NOTE: sensors have no nominal values'
*/

mul (nav. ship. phi, nav. fil. xnom, nav. fil.xnom);
for (i=0; i3SensorChannels; ++ i) {

Sensorstate (nav. fil. xnom, i) = 0.0;
}

/*
* Extrapolate incremental state: DX = PHI*DX + GAMMA*U
*/

mul (nav. ship.phi, nav. fil. dx, nav. fil. xdx);
mul (nav. ship. gamma, nav. ship. u, timpl);
add (nav. fil. xdx, timpl, nav. fil. dx);

/*
* Extrapolate covariance: P = PHI*P*PHIT+Q
*/

mul (nav. ship.phi, nav. fil.p, timpl) ;

mul (tmpl; nav. ship. phit, tmp2);
add (tmp2, nav. fil. q, nav. fil.p);

if (MonitorFlag) {if (MonitorStatus&X)
out ("nav. fil. dx: after ext. \n", nav. fil. dx);

if (MonitorStatus&P)
out ("nav. fil.p: after ext. \n", nav. fil.p);

/********* update ******* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ******* * * * * * * * * * */

/*
* Update Kalman gain, covariance, and incremental state.
*/

update ()
{

int i, /* loop increment */
BadResidualCount /* number of bad residuals this time */

double
ComputeResidual (), /* compute residual for i'th meas.

*/
residual,

- /* filter measurement */
rºw /* weight for current meas. */
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BadResidual Count = 0; /* set bad residual count to zero */

/*
* Compute residual and update Kalman gain, covariance, and
* state for each sensor's data.
*/

for (i-0; i3SensorChannels; ++ i) {

/*
* Compute observation and residual for i 'th measurement.
*/

NewObservation (i) ;

residual = ComputeResidual (i);

/*
* Check residual against desired thresholds value.
* If threshold is exceeded deweight current measurement;
* else, use normal noise value.
*/

if (fabs (residual) > sensor [i] ..
. threshold [ThresholdLevel ) ) {

BadResidual Count----,

rw = sensor[i]. MNoise [HIGH) ; /* de-weighting */
PrintResidual (residual, i, "BAD");
residual = 0.0; /* replacement */

} else {

PrintResidual (residual, i, " "):
rw = sensor [i]. MNoise [LOW) ; /* normal weighting */

}

# ifdef FAILURE
/*

* Simulate sensor outage. Sensor 0 was

* chosen arbitrarily.
*/

if (ShipErompointlndex-0 && i=0) {

rw = sensor [i]. MNoise [HIGH) ;

}

# endif

if (Update Flag) {

/*

* GAIN UPDATE: K = P +HT*inv [H*P*HT+R]
*/

mul (nav. fil.p, nav. fil. ht, nav. fil. k);
mul (nav. fil. h, nav. fil. k, timp2);
scal (nav. fil. k, one/ (scalar (tmp2) +rw), nav. fil. k);

/*

* COVARAINCE UPDATE: P = (I-K*H) *P
*/

mul (nav. fil. k, nav. fil. h., tmpl) ;

mul (tmpl, nav. fil.p., tmp2);
sub (nav. fil.p., tmp2, nav. fil.p);

/*

* INCREMENTAL STATE UPDATE: DX = DX+K* (Z-H*DX)
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*/
scal (nav. fil. k, residual, tmpl);
add (nav. fil. dx, timpl, nav. fil. dx);

}

/*
* Update true state estimate: X = XNOM + DX
*/

add (nav. fil. xnom, nav. fil. dx, nav. fil. x);

if (MonitorFlag) {

if (MonitorStatus & H) out ("nav. fil.h: \n", nav. fil.h);
if (MonitorStatus & K) out ("nav. fil. k : \n", nav. fil. k);
if (MonitorStatus & X) out ("nav. fil. dx: \n", nav. fil. dx);
if (MonitorStatus & P) out ("nav. fil.p:\n", nav. fil.p);
if (MonitorStatus & RES)

fprintf (Output File, "res: %lf\n", residual);

}

/*
* If any residuals were bad, update the bad update count
*/

if (BadResidualCount > 0) {

++BadūpdateCount;
}

/********* NewObservation * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *******/

/*
* Compute direction cosines from sensor to ship; also compute
* estimated range and bearing angle from ship to sensor, and
* estimated heading.
*/

NewObservation (n)
int n; /* channel type */
{

double
dc, /* cross track distance from ship to sensor */
da /* along track distance from ship to sensor */

-
º

zero (nav. fil. h.);

zero (nav. fil. ht);

switch (sensor[n] . type) {

/*
* Range sensor
*/

case RANGE:

do = CrossTrack (nav. fil. x) - sensor [n] . cross;
da = Along Track (nav. fil. x) - sensor [n]. along;
EstimatedRange = sqrt (dc"dc + da” da);
vector (nav. fil. h., 3) dc/Estimated Range;
vector (nav. fil. h, 4) da/EstimatedRange;
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Clock (nav. fil. h) = -c,
Cosine [2*n] = vector (nav. fil. h., 3);
Cosine [2*n-1-1] = vector (nav. fil. h, 4);
break;

/*
* Heading sensor (actually heading error)
*/

Case HEADING:

vector (nav. fil. h, 2) = one;
Estimated Heading = HeadingError (nav. fil.x);
break;

/*
* Bearing sensor
*/

case BEARING:
dc = CrossTrack (nav. fil. x) - sensor [n] . cross;
da = Along Track (nav. fil. x) - sensor [n] . along;
Estimated Range = dc"dc + da” da;
vector (nav. fil. h, 2) -One;

vector (nav. fil. h., 3) da/Estimated Range;
vector (nav. fil. h, 4) -dc/Estimated Range;
Estimated Range = sqrt (Estimated Range);
Cosine [2*n] = vector (nav. fil. h., 3);
Cosine [2*n-1-1] = vector (nav. fil. h, 4);
EstimatedBearing = atan2 (-do, -da)

- HeadingError (nav. fil. x);
break;

/*
* This sensor was not recognized
*/

default:
fprintf (ErrorFile,

"INewObservation: element %d has unknown measurement type = %d\n",
n, sensor[n] . type);

return;
}

/** Select current sensor in H vector and update ship
+-

continuous system matrix
*/
if K Sensorflag) {

vector (nav. fil. h, EnvStates--n) = one;

put (nav. ship. a,
vector (nav. fil.h, 2) *sensor[n]. Estalpha,

n+EnvStates-1, 3);
put (nav. ship. a,

vector (nav. fil. h., 3) *sensor [n]. EstAlpha,
n+EnvStates--1, 4); -

put (nav. ship. a,
vector (nav. fil. h, 4) *sensor [n]. Estalpha,

n+EnvStates--1, 5);
ESut (nav. ship. a,

Clock (nav. fil. h) *sensor [n]. Est/Alpha,
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n+EnvStates-1, 8) ;

}

/*
* H transpose
*/

tpos (nav. fil. h, nav. fil. ht);

/* * * * * * * * * ComputeResidual *** *************************** *************/

/*
* Compute residual based on measurement type
*/

double ComputeResidual (n)
int n; /* measurement n +/
{

double Anglesense ();

switch (sensor [n] . type) {

case RANGE:
return ( Measurement (n) -

(SensorFlag 2 Sensorstate (nav. fil. dx, n) : Estimated Range)
);

case HEADING:
- return ( Measurement (n)

— (Sensorflag 2 Sensorstate (nav. fil. dx, n)
EstimatedHeading)

);

case BEARING:
return ( Measurement (n)

— (SensorFlag 2 Sensorstate (nav. fil. dx, n)
EstimatedBearing)

);

default:
fprintf (ErrorFile,

"ComputeResidual: element %d has unknown measurement type = %d\n",
n, sensor[n] . type);

return (0.0);

/********* EstimatorSTM ****************************************** ****/

/*
* Update estimator state transition matrix (phi and gamma)

*/
EstimatorSTM ()
{

int i ; /* loop incrementors +/
double

SinX3, /* sin (HeadingError) */
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CosX3 /* cos (HeadingError) */

/*
* Update A & B matrices.
*/

Sinx3 = sin (HeadingError (nav. fil. x));
CosX3 = cos (HeadingError (nav. fil.x));
put (nav. ship. a, CosX3, 4, 1);
put (nav. ship. a,

SwayVelocity (nav. fil. x) *Sinx3+nav. ship. vel"Cos)K3, 4,3);
put (nav. ship. a, -Sin X3, 5, 1);
put (nav. ship.a, -SwayVelocity (nav. fil. x) *CosX3, 5,3);

put (nav. ship.b, CosX3, 5, 2);

/*
* Update state transition matrix and conditionally call ricatti.
*/

UpdateSTM (&nav. ship);

tpos (nav. ship.phi, nav. ship.phit);

/*
* Update nomimal ship state
*/

copy (nav. fil.x, nav. fil.xnom);
for (i-0; i3CnvStates; ++ i) {

vector (nav. fil. dx, i) = 0.0;
}

/*
* Save heading error, cross track position, and direction
* cosines indicate ship position at last STM update
*/

LastEHE = HeadingError (nav. fil.x);
LastECT = CrossTrack (nav. fil. x);
for (i-0; i38; ++i) {

LastCosine [i] = Cosine [i] ;
}

/*
* Update the estimators Q matrix based on new phi
*/

UpdateC) ();
STMStatus | = 2;

/*** ****** Nominal Measurements * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* - - -

Compute nominal measurements for use in control input

*inaikeasurementso
int i, /* loop increment */
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double
do, /* cross track distance */
da; /* along track distance */

for (i-0; i3Sensorstates; ++ i) {

switch (sensor[i] . type) {

Case RANGE :

do = CrossTrack (nav. fil. xnom) - sensor [i]. Cross;
da = AlongTrack (nav. fil.xnom) - sensor[i]. along;
vector (nav. ship. u, i42) = sqrt (dc” dc + da” da)

- Clock (nav. fil. xnom) *c;
break;

case HEADING:

vector (nav. ship. u, i42) = HeadingError (nav. fil.xnom);
break;

Case BEARING:
dc = sensor [i]. cross - CrossTrack (nav. fil. xnom);
da = sensor [i]. along - AlongTrack (nav. fil.xnom);
vector (nav. ship. u, i42) = atan2(dc, da)

- HeadingError (nav. fil.xnom);
break;

default:
fprintf (ErrorFile,

"NominalMeasurement: element %d has unknown measurement type = %d\n",

i.
,

sensor[i] . type);
return;

/* * * * * * * * * CheckFilterstatus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/

+

'. Perform miscellaneous checks on times, thresholds, etc.

cºat-seaso

{

int if /* loop incrementor */

/*

* Check time step. If different, recompute phi (and q).

* If heading error or cross track error exceed assigned

* thresholds, update phi (and q).
*/

if (fabs (Data Time - LastTime – TimeStep) > . 001) {

TimeStep = Data Time - Last Time;
EstimatorSTM ();
if (TimeStep > TimeGap)

RestartEilter ();

} else if (

fabs (Heading Error (nav. fil. x) - LastEHE) >
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HeadingThreshold
| | fabs (CrossTrack (nav. fil. x) - LastECT) >

CrossTrackThreshold) {

EstimatorSTM ();

} else if (SensorFlag) {

for (i-0; i38; ++ i) {

if (fabs (Cosine [i] - LastCosine [i]) >

Cosine"Threshold) {

EstimatorSTM ();

}

/*
* Check if specified filter settling time has expired.
* If so, set threshold levels lower.
*/

if (Data Time × SettlingTime) {

Threshold Level = LOW; e

}

/*
* Current bad update count is compared against limit
* as set in the control file. If test succeeds
* filter thresholds are increased.
*/
if (BadūpdateCount >= BadūpdateLimit) {

Threshold Level = MIDDLE;
BadūpdateCount = 0;
SettlingTime = Data Time + SettlingPeriod;

}

if (MonitorFlag) {

if (MonitorStatus & PHI) out ("nav/ship/phi:\n", nav. ship.phi);
if (MonitorStatus & Q) out ("nav/fil/q: \n", nav. fil. q):
if (MonitorStatus & Z) out ("nav/fil/z: \n", nav. fil. z);

}

LastTime = Data Time;

/********* RestartFilter ****** ******* * * * * * * * * * * * * * * * * * * * * * * **********/

Called when filter needs restarting due to excessive time gaps, etc.
Purpose is to reinitialize critical filter elements.

RestartFilter ()

Threshold Level = HIGH;
SettlingTime = Data Time + SettlingPeriod; /* thresh switching */

/* times */
LastTime = Data Time;
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# ifdef RESETP
{

int i ;

for (i-1; i3-FilterStates; ++ i) /* reset uncertainty “/
put (nav. fil.p, pe [i-1], i.

, i) ; /* to initial values */

}
# endif

}

/* * * * * * * * * Update() * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*

* Recompute Q matrix.
*/

UpdateC ()

{

int i, j : /* loop incrementors +/
double p? /* temporary phi +/

/*

* Q for ship states.
*/

p = get (nav. ship.phi, 1, 1);
put (nav. fil. q

,

-

nav. ship. variance [0] / (two” nav. ship. alpha [0]) * (one-pºp),
1, 1);

p = get (nav. ship.phi, 2, 2);
put (nav. fil. q,

nav. ship. variance [1] / (two"nav. ship. alpha [1]) * (one-pºp),
2, 2);

p = get (nav. ship. phi, 6
, 6);

put (nav. fil. Q,

nav. ship. variance [2] / (two"nav. ship. alpha [2]) * (one-pºp),
6, 6);

p = get (nav. ship.phi, 7, 7);
put (nav. fil. G.,

nav. ship. variance [3] / (two"nav. ship. alpha [3]) * (one-pºp),
7, 7);

/*

* Clock Q

*/
if (ClockStates) {

p = get (nav. ship.phi, 9
, 9);
put (nav. fil. q,

nav. ship. variance [4] / (two"nav. ship. alpha [4]) * (one-pºp),
9, 9);

}

/*

* Q for sensor states
*/
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for (i-Envstates#1, j-0; jºSensorstates; ++i, ++j) {

p = get (nav. ship. phi, i, i.);
put (nav. fil. q,

sensor [j]. EstWar/ (two” sensor [j]. Est/Alpha) * (one-pºp),
i., i) ;

/********* Computedops ******************** * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Compute VDOP and GDOP.
*/

Computedops ()

tpos (nav. fil. hdop, tmpl);
mul (tmpl. nav. fil. hdop, timp2);
inv (tmp2, timpl);
gdop = sqrt ( get (tmpl, 1, 1) +get (tmpl, 2, 2) +get (tmpl. 3, 3));
vdop sqrt (get (tmpl, 4, 4));
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Init.c

include <stdio. h
include <math. h
include "array. h"
include "ship. h"

#: include "store. x"

/* * * * * * * * * * * * * * * * * * * ******************** * * * * * * * * * * * * * * * * * * * * * * * * * ******
* Functions contained in this file are:
*
ºr InitConstants () - initialize scalar variables
+ ReadControl File - read parameters from control file
+k Sizes () - set arrays sizes
ºr Creatememory () - allot memory for array structures
* InitArrays () - assign initial conditions to arrays
*r

*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* * * * * * * * * InitConstants * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ********/

*
/: Initialize constant scalars
*

*cºnsertso
{

ShipErompointlndex = -1; /* start from beginning w/offset "/

one = 1.0;
two = 2.0;

pi = 4.0°atan (one);
c = .2997.924,5898e--9; /* speed of light +/
Angle.90 = pi/two; /* 90 degrees in radians “/
Angle180 = pi; /* 180 degrees in radians “/
Angle270 = 1.5*pi; /* 270 degrees in radians “/
Angle360 = two"pi; /* 360 degrees in radians “/

/* * * * * * * * * ReadControl File * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Read the environment and filter parameters.
*/

ReadControl File ()
{

int if
char *p;

/*
* Waypoint file name
*/

if (strlen (p = fe (Control File) ) > MAXFNAME) {
fprintf (stderr,
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"ReadControl File: File name $s to long. \n", p);
finish (0);

if ( (NULL= (WaypointEile=fopen (p, "r")))) {
fprintf (stderr,
"ReadControl File: Can't find waypoint data file %s Wn", p);
finish (0);

}

/*
* Set-up important array sizes
*/

SensorChannels = atoi (fe (Control File));

if (SensorChannels » 5) {

fprintf (ErrorFile,
"Cannot have more than 5 sensor channels\n");

finish (0);
}

Sizes (); ,

/*
* Read initial states

. */
for (i-0; i3RilterStates; ++ i) {if (i.<EnvStates) {

xtrue [i] = atof ((p=fe (Control File)));

} else {

LastRawMeasurement [i-EnvStates] =atof (fe (ControlFile));
}

xest [i] = atof (fe (Control File));
pe [i] = atof (fe (Control File));

}

/*
* Skip sensor states (if flagged).
*/

if (! SensorFlag) {

for (i-0; i3SensorChannels; ++ i) {

LastRawMeasurement [ishipstates]
= atof (fe (Control File));

fe (Control File) ;

fe (Control File) ;

/*
* Type, alpha, channel variance, thresholds and noise values
* for each sensor
*/

for (i-0; i3SensorChannels; ++ i) {

sensor[i]. type = MType (fe (Control File));
sensor [i]. Envalpha = one/atof (fe (Control File));
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sensor [i]. Estalpha = one/atof (fe (Control File));
sensor [i]. Envvar = atof (fe (Control File) ) ;

sensor [i]. EstVar = atof (fe (Control File));
sensor [i]. threshold[HIGH) = atof (fe (Control File));
sensor[i]. threshold [MIDDLE) = atof (fe (Control File));
sensor [i]. threshold [LOW) = atof (fe (Control File));
sensor [i]. MNoise [HIGH) = atof (fe (Control File));
sensor[i]. MNoise [LOW) = atof (fe (Control File));

}

/*
* Environment and estimator time constants and variances
* for heading error, cross track, along track, east current
* north current, and clock.
*/

true. ship. variance [0] = atof (fe (Control File)); /* Sway var. */
nav. ship. variance [0] = atof (fe (Control File));

true. ship. variance [1] = atof (fe (Control File)); /* Yaw variance */
nav. ship. variance [1] = atof (fe (Control File));

true. ship. alpha [2] = one/atof (fe (Control File)); /* east cur. */
nav. ship. alpha [2] = one/atof (fe (Control File));
true. ship. variance [2] = atof (fe (Control File));
nav. ship. variance [2] = atof (fe (Control File));

true. ship. alpha [3] = one/atof (fe (Control File)); /* north cur. */
nav. ship. alpha [3] = one/atof (fe (Control File));
true. ship. variance [3] = atof (fe (Control File));
nav. ship. variance [3] = atof (fe (Control File));

true. ship. alpha [4] = one/atof (fe (Control File)); /* clock +/
nav. ship. alpha.[4] = one/atof (fe (Control File));
true. ship. variance [4] = atof (fe (Control File));
nav. ship. variance [4] = atof (fe (Control File));

/*
* Miscellaneous times, thresholds, and limits
*/

TimeGap = atof (fe (Control File));
TimeStep = atof (fe (Control File));
HeadingThreshold = atof (fe (Control File));
CrossTrackThreshold = atof (fe (Control File));
RichEThreshold atof (fe (Control File));
RicCTThreshold atof (fe (Control File));
Cosine"Threshold = atof (fe (Control File));
Waypoint Threshold = atof (fe (Control File));
SettlingPeriod = atof (fe (Control File));
BadupdateLimit atoi (fe (Control File));

-

-

/*
* Read sensor coordinates.
* Note that Landstations count is not literal in the
* range/bearing case.
*/

Landstations = SensOrChannels - 1;
for (i-0; i3DandStations; ++ i) {
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atof (fe (Control File)); /* East " /
atof (fe (Control File)); /* North */

sensor [i]. east
sensor[i]. north

}

/*
* Sway velocity variance, yaw rate variance, ship length and
* velocity, and ship hydrodynamic constants for environment
* and estimator.
*/

true. ship. length = atof (fe (Control File)); /* length */
nav. ship. length = atof (fe (Control File));

true. ship. vel = atof (fe (Control File)); /* velocity +/
nav. ship. vel = atof (fe (Control File));

true. ship.cvu = atof (fe (Control File)); /* CVU +/

nav. ship. cvu = atof (fe (Control File));

true. ship. cwu = atof (fe (Control File)); /* CWU +/

nav. ship. cwu = atof (fe (Control File));

true. ship.cvdv = atof (fe (Control File)); - /* CVDV +/

nav. ship. cvdv = atof (fe (Control File));

true. ship.cvw = atof (fe (Control File)); /* CVW w/

nav. ship.cvw = atof (fe (Control File));

true. ship. cwdv = atof (fe (Control File)); /* CWDV +/

nav. ship. cwdv = atof (fe (Control File));

true. ship. cww = atof (fe (Control File)); /* CWW w/

nav. ship. cww = atof (fe (Control File));

/*
* Performance criterion
*/

for (i-0; i3Shipstates; ++i) {

Control O [i] = atof (fe (Control File));
}

ControlR[0]
ControlR[1]

atof (fe (Control File));
atof (fe (Control File));

/*
* Determine which arrays are to viewed.
*/

do (

MonitorStatus ||= mondecode (fe (Control File) ) ;

} while (token = END) ; /* must have an END ! */

/********* Sizes ********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Initialization of important array dimensions.

Sizes ()
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/*
* Number of sensor states
*/

if (Sensorflag) {
Sensorstates =

} else {
Sensorstates=0;

}

ClockStates = 2;
Shipstates = 7;
Envstates = Shipstates + ClockStates;

SensorChannels;

FilterStates = Shipstates
+ ClockStates
+ Sensorstates;

/* Number of clock states */
/* Number of ship states */

/* Number of env. */
/* States */

/* Number of filter states */

/******** CreateNemory * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Assign pointers to memory and dimension
*/

CreateNemory ()
{

/*
* Scratch arrays
*/

dim (&tmpl; FilterStates, FilterStates,
dim (&tmp2, FilterStates, FilterStates,
dim (&tmp3, FilterStates, FilterStates,

/*
* Estimator memory
*/

dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.
dim (&nav.

fil. dx, FilterStates, l,
fil. xdz, FilterStates, l,
fil. xnom, FilterStates, 1,
fil. x, FilterStates, l,
fil. z, SensorChannels, 1,
fil.p, FilterStates,
fil. q, FilterStates,
fil. h, l, FilterStates,
fil. ht, FilterStates, l,
fil. hdop, Sensorchannels, 4,
fil. k, FilterStates, 1,

FilterStates,
FilterStates,
FilterStates,
Sensorstates--2, 1,

dim (&nav. ship. a,
dim (&nav. ship. b,
dim (&nav. ship. e.,

dim (&nav. Ship. u,
dim (&nav.
dim (&nav.

FilterStates,
Sensorstates--2,
FilterStates,

"nav. ship. u");
ship. phi, FilterStates, FilterStates,
ship. phit, FilterStates, FilterStates,

arrays.

"tmpl wº
) ;

"tmp2");
"tmp3") ;

"nav. fil. dx");
"nav. fil. xdx");
"nav. fil. xnom");

"nav. fil. x");
"nav. fil. z");

FilterStates,
FilterStates,

"nav. fil. h");
"nav. fil.ht");

"nav. fil. hdop");
"nav. fil. k");

"nav. fil.p"
"nav. fil. q"

);
) ;

"nav. ship. a.");
"nav. ship.b");

"nav. ship. e.");

"nav. ship. phi"):
"nav. ship. phit");
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dim (&nav. ship. gamma, FilterStates, Sensorstates#2,
"nav. ship. gamma");

dim (&nav. ship. gain, 2, FilterStates, "nav. ship. gain");

/*
* Environment memory
*/

dim (&true. ship. x, Envstates, l, "true. ship. x");
dim (&true. ship. u, 2, 1, "true. ship. u");
dim (&true. ship.phi, Envstates, Envstates, "true. ship.phi");
dim (&true. ship. gamma, Envstates, 2, "true. ship. gamma");

dim (&true. ship. gain, 2, EnvStates, "true. ship. gain");
dim (&true. ship. a, EnvStates, Envstates, "true. ship. a.");
dim (&true. ship.b, EnvStates, 2, "true. ship.b");
dim (&true. ship.e, Envstates, Envstates, "true. ship.e");

dim (&control. q, Shipstates, Shipstates, "control. q");
dim (&control. r, 2, 2, "control. r");
dim (&control.p, Shipstates, Shipstates, "control. p");
dim (&control. phi, Shipstates, Shipstates, "contol. phi");
dim (&control. phit, Shipstates, Shipstates, "contol. phit");
dim (&control. gamma, Shipstates, 2, "contol. gamma");

dim (&control. gammat, 2, Shipstates, "contol. gammat");
dim (&control. gain, 2, Shipstates, "control. gain");

/********* InitArrays ******************************** * * * * * * * * * * * * * * * */

/*
* Perform all vital array initializations before running regulator.
*/

Initàrrays ()
{

int is /* loop increment */
double v, l; /* ship velocity and length */

/*
* ESTIMATOR ARRAYS
*/

zero (nav. fil. q):

for (i-0; i3RilterStates; ++ i) {

vector (nav. fil. x, i) = xest [i] ;

}

for (i-0; i3Sensorstates; ++ i) {

Sensorstate (nav. fil. dx, i) = Sensorstate (nav. fil. x, i.);
}

/*
* Initial covariance diagonal.
*/

zero (nav. fil.p);
for (i-l; i3-FilterStates; ++i)

put (nav. fil.p, pe [i-1], i, i.);
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/*
* Intialize constant terms in A and B and E for later
*r phi and gamma computations
*r

:V nav. ship. vel;
l nav. ship. length;

zero (nav. ship. a);
put (nav. ship. a, -nav. ship. cvdvºv/l, 1, 1);
put (nav. ship.a., -nav. ship.cvdvºv/l, 1, 1);
put (nav. ship.a, vº (nav. ship. Cvw-one), 1, 2);
put (nav. ship.a., -nav. ship. cwdv”v/ (lºl), 2, 1);
put (nav. ship. a, -nav. ship. cww”v/l, 2, 2);
put (nav. ship. a, one, 3, 2);
put (nav. ship. a, -nav. ship. alpha [2], 6, 6):
put (nav. ship.a., -nav. ship. alpha [3], 7, 7);
put (nav. ship.a, one, 8, 9);
put (nav. ship.a., -nav. ship. alpha [4], 9, 9);

zero (nav. ship. b) ;
put (nav. ship. b, -nav. ship. Cvu”v”v/l, 1, 1);
put (nav. ship.b, nav. ship. cwu"v"v/ (l"l), 2, 1);

ident (nav. ship. e);
zero (nav. ship. gain);

nav. ship. alpha [0] = -one/get (nav. ship.a, 1, 1);
nav. ship. alpha [1] = -one/get (nav. ship. a, 2, 2):

/*
* If sensor states are included. . .

*/
for (i-0; i3SensorChannels; ++ i) {

if (Sensorflag) {
put (nav. ship. a, -sensor[i]. Estalpha,

i-EnvStates-l, i-º-EnvStates-l);
put (nav. ship. b, sensor [i]. Estalpha,

i-EnvStates-1, i-3);
}

sensor[i]. phi = exp (-TimeStep” sensor[i]. Envalpha);
sensor[i]. gamma = one - sensor[i]. phi;
Measurement (i) = Last RawNſeasurement [i] :

}

/*
* ENVIRONMENT ARRAYS
*/

for (i+0; i3CnvStates; ++ i) {

vector (true. ship. x, i) = xtrue [i] ;
}

v = true. ship. vel;
l = true. ship. length;

zero (true. ship. a);
put (true. ship.a, -true. ship. cvdv”v/l, 1, 1);
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put (true. ship.a, -true. ship. Cvdv"v/l, 1, 1);
put (true. ship.a, vº (true. ship.cvw-l.0), 1, 2);
put (true. ship.a, -true. ship. cwdvºv/ (l"l), 2, 1) :
put (true. ship. a, -true. ship. Cww”v/l, 2, 2);
put (true. ship. a, one, 3, 2);
put (true. ship.a, -true. ship. alpha [2], 6, 6);
put (true. ship. a, -true. ship. alpha [3], 7, 7);
put (true. ship.a, one, 8, 9);
put (true. ship. a, -true. ship. alpha [4], 9, 9);

zero (true. ship. b);
put (true. ship.b, -true. ship.cvu”vºv/l, 1, 1);
put (true. ship.b, true. ship. cwu”v”v/ (lºl), 2, 1);

zero (true. ship. u);

ident (true. ship. e);
zero (true. ship. gain);

zero (control. Q);
for (i-1; i-Shipstates; ++ i) {

“put (control. Q, Control O [i-1], i, i.);
}

zero (control. r);
put (control. r, ControlR[0], 1, 1);
put (control. r, ControlR [1], 2, 2);
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Output.c

include <stdio. h
include <math. h
include "array. h"
include "ship. h"

#: include "store. x"

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ****************
+ Functions contained in this file are:

output () - print results to screen or file
PrintPesidual () - print residual with status:

*********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *******/

/********* output * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** *****************/

output ()
{

fprintf (OutputEile,

"%. 21f \tº .21f\tº .21f \tº .2lf\tº .21f \tº .2lf\tº .2lf\tº .2lf\tº .2lf\t $d Vtºd\n",

Data Time, vector (true. ship. u,0),
HeadingError (true. ship. x),
CrossTrack (true. ship. x),
Along Track (true. ship. x),
HeadingError (nav. fil. x),
CrossTrack (nav. fil. x),
Along Track (nav. fil. x),
sqrt (get (nav. fil.p, 4, 4)),
STMStatus, waypoint [ShipPrompointlndex.] ..id);

/********* PrintResiduals * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Send bad residual message to screen or file.
*/

PrintPesidual (r, n, s)
double r. /* residual value */
int n; /* channel +/
char *s; /* comment */
{

if (*s t = ' ' ) {

fprintf (ErrorFile,
"Bad residual = %. 31f on channel $d 0 time $.2lf\n",

r, n, Data Time);
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Ship.c

include <stdio. h
include <signal. h>

include "array. h"
include "ship. h"

include "Store. x"

/**********************************************************************
ºr

A Kalman filter
is used as an observer to provide estimated state feedback to the

Sensor measurements are created from the

States for the plant (also known as the "environment") and

Observer

Sway velocity
Yaw rate
Heading Error
Cross track position
Along track position
East Current
North current
Clock bias
Clock drift
Sensor
Sensor
Sensor
Sensor
Sensor :

* This program implements a discete time regulator.
*

* the plant (a ship).
* ship's true state and are corrupted by noise and lag.
ºr

+k

* observer are:
*
ºr Plant
* -----
ºr 1) Sway velocity
+ 2) Yaw rate
+ 3) Heading error
* 4) Cross track position
ºr 5) Along track position
+ 6) East Current
ºr 7) North Current
ºr 8) Clock bias
* 9) Clock drift
* 10)
+ ll)
*r 12)
+ 13)
*r 14)
+

* Note that the observer does not always use all 5 sensors.
* Control input to the plant (and observer) are:
+

+ 1) rudder
ºr 2) velocity
*

***************************** **** ******************** * * * * * * * * * * * * * * * */

/********** ************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Functions contained in this file are:

main ()
InitAll ():

- startup routine- take care of all initializaions

********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* * * * * * * * * main * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

main (argc, argv)
int argc;
char **argv;
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InitAll (argo, argv);

/* clear strm status */

/* compute control input U +/
/* update plant */

/* estimate current state */

; /* waypoint switch needed? “/
/* print results */

while (1) {

Data Time += TimeStep;
STMStatus = 0;

controller ();
environment ();

if (EstimatorFlag) {

Sensorsimulator (); /* simulate sensors ”/
estimator ();
}

CheckWaypointStatus ()
output ();

/********* InitAll * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
ALL initializations done here

Init}\ll (argc, argv)
int argc;
char **argv;
{

int finish ();

signal (SIGINT, finish); /*

cmdln (argc, argv); /*
InitConstants (); /*
ReadControl File (); /*

CreateNemory (); /*
Init/\rrays (); /*
ProcessMap (); /*
RotateShip (); /*
RestartFilter (); /*
EnvironmentSTM (); /*
if (EstimatorFlag) {

EstimatorSTM () ; /*
}

if (TrueFlag) { /*
riccati (&true. ship);

} else {

riccati (&nav. ship);
}

LastTime = Data Time;
output (); /*

set up signal trap */
interpret command line argument (s) */
initialize constant scalars ”/
read control file */

allocate memory for filter arrays */
initialize filter arrays */
read total map and compute constants */
set-up first waypoint geometry “/
initialize filter covariance, etc. */
initial regulator PHI and GAMMA */

initial filter PHI & GAMMA */

initialize first gain */

print first point */
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Ship.h

/*
* All #define's and structure templates.
* NOTE: array.h must be included before this file
*/

# define MAXFNAME 30 /* Maximum length of any file name */

/*
* Threshold levels
*/

# define LOW O

# define HIGH 1

# define MIDDLE 2

/*
* Bit encoded matrix descriptors for monitor function.
*/

# define K l
# define P 2

# define PHI 4

# define Q 8

# define X 16
# define Z 64

# define RES 128

# define OFF O

# define ON l
# define NUMBER 2

# define END 4

/*
* Measurement-type flags
*/

# define RANGE O

# define HEADING l
# define BEARING 2

/*
* Macros intended for readability
*/

# define SwayVelocity (s) vector (s, 0)
# define Yawkate (s) vector (S, l)
# define HeadingError (s) vector (s, 2)
# define CrossTrack (s) vector (s, 3)
# define Along Track (s) vector (s, 4)
# define Clock (s) vector (s, 7)
# define ClockDrift (s) vector (s, 8)
# define Sensorstate (s, i.) vector (s, i-9)
# define Measurement (i) vector (nav. fil. z, i.)

/*
* Templates for all structures
*/
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/*
* Template for ship observer (Kalman filter)
*/

struct filter {

struct array

};

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

incremental state */
nominal value of state */
extrapolated dx */
best estimate of total ship state */
covariance */
state noise */
observation matrix (ENA) */
its transpose */
measurement vector */
kalman gain pointer */
hdop/vdop utility matrix */

* Template for each sensor
*/

struct sensor {

int
type;

double
Envalpha,
Estalpha,
phi,
gamma,

east,
north,
CrOSS,
along,

Envvar,
EstVar,
MNoise [2] ,
threshold[3]

};

/*

/* type of sensor (heading, etc.) */

/* environment alpha for this sensor */
/* estimator alpha for this sensor */

/* sensor position - east +/
/* sensor position - north */
/* sensor position - cross-track */
/* sensor position – along-track */

/* environment sensor output variance */
/* estimator sensor output variance */
/* measurement noise for estimator */
/* residual thresholds for estimator */

* Template for ship related material
*/

struct ship {

struct array
*phi,
*phit,
*gamma,
*gain,
* u,
*x,

/* state transition matrix */
/* stim transpose */
/* discrete control input “/
/* Riccati gain */
/* control input +/
/* ship state (used only in controller) */
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alpha [5],
variance [5],
vel,
length,
Cvw,
cvdv,
Cvu,
Cww,

Cwdv,
CWu

};

/*
* Template for each waypoint
*/

struct waypoint {
double

east,
north,
Trajectory Length,
Turn/Angle,
heading,
Cos'TA,
Sin'TA,
TanTA2,
Cosheading,
SinHeading

int id:
};

/*

/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

* Template for control related
*/

struct control {

struct array

};

/
* Estimated ship state
*/

/*
/*
/*
/*
/*
/*
/*
/*

continuous system matrix */
continuous-control input matrix */
identity matrix */

alpha +/
state variances */
ship velocity +/
ship length */
ship hydrodynamic constants. . . */

east axis position of waypoint */
north axis position of waypoint */
distance to next waypoint */
New Heading - Old Heading */
absolute heading of trajectory “/
cos (Turnangle) */
sin (Turnangle) */
tan (TurnAngle/2) */
cos (Heading) */
sin (Heading) */

waypoint identification number */

variables

7x7 phi +/
7x7 phi transpose */
7x2 gamma “/
2x7 gamma transpose */
7x7 performance indice “/
2x2 performance indice “/
7x7 performance index */
2x7 Ricatti gain */

C-37



struct nav (

struct ship ship; /* filter model of ship */
struct filter fil: /* basic Kalman filter structure */

};

/*
* True ship state
*/

struct true (

struct ship ship;
};

/*
* Structure for each given point on the ship
*/

struct shippoint {

int Frompointlndex; /* waypoint index to corner's frompoint */

double
CrOSS, /* cross-track position of point */
along, /* along-track position of point */
RefDross, /* reference cross-track position of point */
Refalong, /* reference along track position of point */
RelCross, /* relative cross track position of point */
RelAlong, /* relative along track position of point */
MinClearance /* smallest clearance thus far */

-
*

struct waypoint *from; /* current ship-point frompoint */
};
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Store.c

# include <stdio.h>
# include "ship. h"

/*
* Storage for all external variables (except most struct arrays)
*/

FILE
*WaypointEile, /* waypoint data file pointer */
*Control File, /* controlfile pointer */
*OutputEile, /* output file pointer */
*ErrorFile /* error file pointer */

int
token, /* code for string identified by fe () */

Dopflag, /* compute dilution-of-precision */
EstimatorFlag, /* enable/disable estimator */
Lagflag, /* enable sensor lag & noise modeling */
MonitorStatus, /* monitor status */
MonitorFlag, /* monitor enable flag +/
SensorFlag, /* enable inclusion of sensor states */
TrueFlag, /* true state feedback only */
Updateflag, /* enable/disable Kalman update */

ShipTrompointlndex, /* filter/env. index in waypoint array */
BadūpdateCount, /* consecutive count of bad updates */
BadūpdateLimit, /* max # of allowable bad updates */
Threshold Level, /* current threshold level +/
STMStatus, /* which STM & Riccati calls occured */

Shipstates, /* Number of ship states */
ClockStates, /* Number of clock states */
Sensorstates, /* Number of sensor states */
SensorChannels, /* Number of sensor channels “/
Env$tates, /* Number of environment states */
FilterStates, /* Number of filter states */
Landstations, /* Number of range stations */
Waypoints /* Number of waypoints */

double
Data Time, /* Sensor channel data time tag "/
TimeStep, /* Data Time - Last Time */
Last Time, /* previous Data Time */

Waypoint Threshold, /* criterion for switching to next
waypoint */

HeadingThreshold, /* HeadingError change P # causes stim */
/* update */

CrossTrackThreshold, /* C-T change - # causes stim update */
RichEThreshold, /* call riccati if heading error > # */
RicCTThreshold, /* call riccati if cross track > # */
CosineThreshold, /* BAngle change - # causes stim update */

C-39



-p

/*
*
*/

SettlingPeriod,
Settling Time,
TimeGap,

gdop,
vdop,

xtrue [14],
xest [14],
pe [14],

ControlO [7],
ControlR[2] ,

EstimatedRange,
EstimatedHeading,
EstimatedBearing,
LastRawMeasurement [5],

LastEHE,
LastECT,
LastPHE,
LastPCT,
LastCosine [8],
Cosine [8],
SinHeading,
Cosheading,
Angle.90,
Anglel80,
Angle270,
Angle360,

One,
two,
pi,
C

struct nav nav,
struct waypoint waypoint [20];
struct sensor sensor [5] ;

struct true true;
struct control control;
struct array “tmpl; *tmp2, *tmp3;

/*
/*
/*

/*
/*

/*
/*
/*

/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

Templates for the following can be

time required for filter to settle */
Starting time + SettlingPeriod */
time gap (sec) before filter reset */

geometric dilution of precision */
vertical dilutution of precision */

initial
initial
initial

environment state */
estimated state */
uncertainty “/

optimal control indice diagonal */
optimal control indice diagonal */

Est. distance from sensor to ship */
Est. heading of ship */
Est. bearing from ship to sensor */
Last raw measurement in sensor */
simulator */

Previous Estimator Heading Error */
Previous Estimator Cross Track */
Previous plant Heading Error */
Previous plant Cross Track */
Previous direction cosine */
Current direction cosine */
sin (Heading) ( from NextWaypoint () ) */
cos (Heading) ( from NextWaypoint () ) */
pi/2 radians “/
pi radians “/
3*.pi/2 radians “/
2*pi radians “/

unity +/
unity + unity +/
3.1415. . . */
speed of light */

found in ship. h

/* navigation filter */
/* waypoint map */
/* sensors */
/* controller */
/* control variables */
/* temporary arrays */
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Store.x

/*
Extern's for global variables found in "store.c".
Corresponding comments for most of the variables
can be found in "store. c'.

: NOTE: stolio.h must be included before this file
*/

extern FILE
*Waypoint File,
*Control File,
*OutputEile,
*ErrorFile

-
º

extern int
token,

DopFlag,
EstimatorFlag,
Lagflag,
MonitorStatus,
MonitorFlag,
Sensorrlag,
TrueFlag,
Update Flag,

ShipPrompointlndex,
BadūpdateCount,
BadūpdateLimit,
Threshold Level,
STMStatus,

Shipstates,
ClockStates,
Sensorstates,
SensorChannels,
Envstates,
FilterStates,
LandStations,
Waypoints

-
º

extern double
Data Time,
TimeStep,
HastTime,

Waypoint Threshold,
HeadingThreshold,
CrossTrackThreshold,
RichEThreshold,
RicCTThreshold,
CosineThreshold,
SettlingPeriod,
SettlingTime,
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TimeGap,

gdop,
vdop,
Count [],

xtrue [],
xest [],
pe [],

ControlOſ],
ControlR[],

EstimatedRange,
EstimatedHeading,
EstimatedBearing,
LastRawMeasurement [ ],
LastEHE,
LastECT,
LastPHE,
LastPCT,
LastCosine [ ],
Cosine [],
SinHeading,
Cosheading,
Angle.90,
Angle180,
Angle270,
Angle360,

One,
two,
pi,
C

/*
+k Extern declarations for templates found in "ship. h".
*/

extern struct nav nav,
extern struct waypoint waypoint [];
extern struct sensor sensor[];
extern struct true true:
extern struct control control;
extern struct array *tmpl; *tmp2, *tmp3;

/*
* External function declaration
*/

double noise () ;
char *fe ();
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Utils.c

include <stdio. h
include <math. h
include <ctype.h>
include "array. h"
include "ship. h":

# include "Store. x"

/************************************************************ **** * * * * * *
ºr Functions contained in this file are:
*r

* mondecode () - decode user's monitor selections
+ MType () - decode sensor types
+ Cmdln () - general command line arg handler
* help () - prints help info
* finish () - end window mode and exit
* ACtoEN () - waypoint system to east-north
* Anglesense () - remove 360°->0 degree discontinuity
ºr NormalizeAngle () - insure angle is between 0 & 360
+ noise () - simulate noise
+ fe () - extract uncommented text
+ decode () - indicate fe string is recognized
ºr

*** ************************************ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/********* mondecode ************************** * * * * * * * * * * * * * * * * * * * * * * */

/*

!,
Decode monitor selections

+

mondecode (p)
char *p;
{

if (! stromp (p, "END")) return 0;
if (! stromp (p, "K")) return K:
if (! stromp (p, "P")) return P;
if (! stromp (p, "PHI")) return PHI;
if (! strcmp (p, "Q")) return Q;

if (! stromp (p, "X")) return x;
if (! stromp (p, "Z")) return z;
if (! strcmp (p, "H")) return H:
if (! stromp (p, "RES") ) return RES;
fprintf (stderr, "mondecode: illegal monitor request $s. \n", p);
return (0);

/* * * * * * * * * MType * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
k

*/
int MType (p)
char *p;
{

Determine type for each filter measurement
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if (! stromp (p, "range")) return RANGE:
if (! strcmp (p, "bearing")) return BEARING:
if (! strcmp (p, "heading")) return HEADING:
fprintf (stderr, "MType: unknown measurement type $s. \n", p);

/* * * * * * * * * Cmdln * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
ºr

*/
General command line arguments handler.

cmdln (argo, argv)
int argc;
char *argv[];
{

*/

register char *name = *argv;
int ErrorFlag;

/*
* Some default settings
*/

Error File = Stderr; /* error file is stderr "/
OutputEile = stcout; /* output is staout */

ErrorFlag = OFF: /* no error file creation */
EstimatorFlag = ON: /* enable estimator */
Lagflag = ON: /* enable sensor lag & noise modeling */
SensorFlag = ON: /* sensor states included */
TrueFlag = OFF: /* allow estimator feedback to controller

Update Flag = ON: /* enable Kalman updates */

argc--, argv-4;

if (argc = 0) {
help (name);

}

if (**argv = '-')
for (; ; ) {

switch (*** (*argv)) {

/*
* Options go here.
*/

case NULL: argv-4; argc--; break;
case 'd'': DopFlag = ON; continue;
case 'e': Error Flag = ON; continue;
case 'f'': EstimatorFlag = OFF; continue;
case 'l' : Lagflag = OFF; continue;
case 'm': MonitorFlag = ON; continue;
case 's': Sensor Flag = OFF; continue;
case 't': TrueFlag = ON; continue;
case 'u' : UpdateFlag = OFF; continue;
default: fprintf (stderr,

"Unknown option &c.", **argv);
help (name);
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break;

/*
* Open control file.
*/

if (argc--) {

if ( (NULL = (Control File = fopen (*argv, "r")))) {
fprintf (stderr, "%s: Can't open $s. \n", name, *argv);
finish (0);

}

} else
help (name); /* No control file named */

/*
* Create output file, if named.
*/

if (argc) {

if ( (NULL = (OutputEile = fopen (*4+argv, "w")))) {
fprintf (stderr,
"%s: Can't create $s. \n", name, *argv);
finish (0);

}

if (! Error Flag) {

{ char timp (100);
sprintf(tmp, "%s. err", *argv);
if ( (ErrorFile = fopen (tmp, "w"))==NULL) {

fprintf (stderr, "%s: Can't create $s Wn",
name, timp);

finish (0);
}

}

}

}

/*
* If no observer, feedback must be true state.
* Sensor states would be irrelevant.
*/

if (! EstimatorFlag) {
TrueFlag = ON:
Sensorrlag = OFF:

}

/*
* "out ()" prints to same place as Output File
*/

outfp = Outputfile;

/* * * * * * * * * help *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

help (name)
char *name;

fprintf (stderr,
"\nusage: %s -[deflmstuw] Control File [OutFile] \n\
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\nList of options: \nvn\
d - evaluate DOPSVn\

- suppress creation of error file\n\
- disable estimator \n\
- no sensor lag & noise in sensor simulator \n\

monitor filter variables as specified in control file\n\
- ignore sensor states\n")
- true state feedback only \n\
- no Kalman update \n\

Options may be combined. \n\n", name);
.

-

finish (0);

/* * * * * * * * * finish * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/

/*
* Take care of any last business and exit.
*/

finish (code)
int code;

{

}

exit (code) ;

/********* ACtoEN ****************************************************/

/*
* Convert along/cross track position to east-north
*/

ACtoEN (along, cross, east, north)
double

along, /* along track position */
CrOSS, /* cross track postion */
* east, /* returned east position */
*north /* returned north position */

;

*east = waypoint [ShipPrompointlndex.] ..
. east

+ along “Sinheading + cross"Cosheading;
*north = waypoint [ShipErompointlndex) . north

+ along*CosHeading - cross”SinHeading:

/********* Anglesense * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/

/*

* Adjust Varangle sense to coincide with RefAngle

* to avoid the 360°->0 discontinuity.
*/

double Anglesense (RefAngle, Varangle)
double -

RefAngle, /* the angle with which to compare Varangle */
Varangle; /* the angle to be normalized (if needed) */
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if (RefAngle-Angle270 && Varangle.<Angle.90) {
Varangle += Angle360;

} else if (RefAngle.<Angle.90 && Varangle-Angle270) {
Varangle -= Angle360;

}

return ( Varangle );

/********* Normalizeńngle ********************************************/

/*
* Insure given angle is within 0 to 360 degree range
*/

double NormalizeAngle (angle)
double angle;
{

if ( angle < 0.0 ) {

angle += Angle360;

} else if ( angle > Angle360 ) {
angle -= Angle360;

}

return (angle) ;

/********* noise ********************************************** *******/

#define NORM 2147483.647 /* 2^31 – 1 */

/*
* Simulate noise with random number generator. Random returns a
* long integer between 0 and 2^31 – 1, which is normalized by NORM

* to a double between 0.0 and 1.0. Subtracting by 0.5 and multiplying
* by sqrt (12*variance) makes the number zero mean with variance v.
*/

double noise (v)
double v;
{

}
return ( ( ( (double) rand ()/NORM) - (double) 0.5) *sqrt (12.0°v));

/* * * * * * * * * fe * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* "Front End." Fe is used by ReadControl File to extract uncommented

!,
text from the control file.

+

# define MAXCHRs 100

char *fe (fp)
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FILE *fp;
{

register int c, i.
static int lineno = l;
static char text [MAXCHRS] ;

for (; ; ) switch ( (c=getc (fp) )) {

case '; ': while ( (c=getc (fp)) = ' \n"); lineno-4; break;
case " \n': lineno-4-; break;
case " \t': case " " : break;
case EOF: token = EOF; return;

default: if (isalpha (c) || c =''/') {

text [i++) = c;
c=getc (fp);
while (isalnum (c) || c = "_| c = " . " || c ="../') {

text [i++) = c;
if (i >= MAXCHRS)

fprintf (stderr,
"fe: too many characters on line $d\n", lineno);

c = getc (fp);
}

text [i] = NULL;
token = decode (text);
return text;

}

if (isdigit (c) || c = ''. ' || c= '-' ) {i = 0;
text [i++) = c;
c=getc (fp);
while (isdigit (c) || c = '.'

| | c = 'e' || c = '-' ) {

if (i >= MAXCHRS)
fprintf (stderr,

"fe: too many characters on lineno $d Vn", lineno);
text [i++) = c;

c = getc (fp);

}

text [i] = NULL;
token = NUMBER:
return text;

}

c& 0xff, lineno);
break;

}

/* ******** decode * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/

/*

* Set token to identify string returned by fe.
*/

decode (text)
char *text;

{

fprintf (stderr, "fe: unknown character $x line: %d\n",
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if (! strcmp (text, "END")) return END;
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#:

include
include
include
include

include

Way.c

<stdio. h
<math. h
"array. h"
"ship. h"

"Store. X"

/**********************************************************************
Functions contained in this file are:*r

:
+

CheckWaypointStatus () - check need for waypoint switch
ReadWaypoint () - read waypoint map
ProcessMap () - process map
RotateShip () - project ship onto new system

*********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/****** * * * CheckWaypointStatus * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
+

*k
Check need for waypoint switch

/
CheckWaypointStatus ()
{

double

-
w

at St /* Along-Track Switching Threshold */

struct waypoint *w:

W = &waypoint [ShipPrompointlndex.];

if (TrueFlag) {

} else {

atSt = w->TrajectoryLength
- CrossTrack (true. ship. x) * wi>TanTA2
- Waypoint Threshold;

if (AlongTrack (true. ship. x) > atst) {
Rotateship ();
EnvironmentSTM ();

}

atSt = w->Trajectory Length
– CrossTrack (nav. fil. x) * wi: Tan TA2
- Waypoint Threshold;

if (AlongTrack (nav. fil. x) > atst) {
Rotateship ();
RestartFilter ();
EstimatorSTM () ;
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/********* ReadWaypoint * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Read data for one waypoint
*/

ReadWaypoint (w)
struct waypoint *w;
{

return ( (int) fscanf (WaypointFile, "%d%lf$lf",
&w->id, &w->east, &w->north)

);

/* * * * * * * * * ProcessMap ************ *********** * * * * * * * * * * * * * * * * * * * * * * * * */

/*
+

+ Read in waypoint map and compute turning angle and other constants
for each waypoint.

fºcessiºpo
double

Anglesense (), /* returns arg2 relative to arg1 */
de, /* east axis difference */
dn /* north axis difference */--

struct waypoint
*to, /* topoint waypoint pointer +/
* from /* frompoint waypoint pointer */

/*
*
*/

Waypoints = 0;
from = waypoint;
to - waypoint:

Start from zero'th waypoint

/*
* Read first waypoint*/if ( ReadWaypoint (from) = (int) EOF ) {

fprintf (ErrorFile,
"ProcessMap: incomplete or empty map file. \n");

finish (0);

for (++Waypoints, ++to; Waypoints<20; ++Waypoints, ++to) {
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along = Along Track (nav. fil.x);
CrossTrack (nav. fil.x) = cross * wi-CosTA - along * wi>SinTA;
Along Track (nav. fil.x) = cross * wi>SinTA + along * wi>CosTA;

/* -

* Project controller ship position onto new trajectory
*/

cross = CrossTrack (true. ship. x);
along = Along Track (true. ship. x);
CrossTrack (true. ship. x) = cross * wi>CosTA – along * wi>SinTA;
Along Track (true. ship. x) = cross * wi>SinTA + along * wi>CosTA;

/*
* Update sensor cross track/along track coordinates
+/

for (i-0; i3Landstations; ++ i) {

de = sensor [i]. east - w >east;
dn = sensor [i]. north - w Snorth;
sensor[i]. cross = de * wi>CosHeading - dn + wi>SinHeading:
sensor[i]. along = de * wi>SinHeading + dn + wi>CosHeading;

}

/*
* Update estimator and environment A matrix water current
* coordinate transformation.
* /

put (nav. ship. a, w->Cosheading, 4, 6):
put (nav. ship. a, -w->SinHeading, 4, 7);
put (nav. ship.a, w->SinHeading, 5, 6);
put (nav. ship. a, w=>CosHeading, 5, 7);

put (true. ship. a, w->CosHeading, 4, 6):
put (true. ship. a, -w->SinHeading, 4, 7);
put (true. ship. a, w->SinHeading, 5, 6):
put (true. ship. a, w->CosHeading, 5, 7);
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Synopsis of Matrix Library Calls

Call

GET(A1, ROW, COLUMN)

PUTCA1, VALUE, ROW, COLUMN)

ADD(A1, A2,A3)

SUB(A1, A2,A3)

COPY(A1,A2)

DIM(A1, ROW,COLUMN, STRING)

IDENT(A1)

INV(A1,A2)

NTUL(A1, A2,A3)

NEG(A1, A2)

SCAL(A1,VALUE,A2)

TPOS(A1,A2)

2ERO(A1)

Operation

GET accesses the element pointed

to by (ROW,COLUMN) from the
array A1. GET returns a double.
ROW/COLUMN values are assumed
to start at 1.

PUT places VALUE at
(ROW,COLUMN)
in array A1. VALUE is of type
double. ROW/COLUMN values
are assumed to start at 1.

Performs A3 = A1 + A2

Performs A3 = A1 - A2

Copies A1 to A2

DIM allocates memory required for
A1. ROW and COLUMN refers to
the dimensions of A1; STRING is the

name of the array.

Replace contents of A1 with identity
matrix

Performs A2 = inv(A1)

Performs A3 = A1 * A2

Performs A2 = -A1

Performs A2 = VALUE*A1.
VALUE is of type double.

Performs A2 = transpose(A1)

Replace contents of A1 with zeros
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Expanded File and Function Listing

In the list to come each file is named along with the functions contained therein. Each
function entry has the following form:

Function:

Purpose:

Called By:

Calls:

Passed Values:

Input Variables:

Intermediate Variables:

Output Variables:

Returned Value(s):

Name of this function.

What this function does.

Who calls this function.

Who this function calls.

List of values passed via the
function's argument.

List of external variables
whose values are used in this
function.
Example: nav.fil.g. to extrapolate.

List of external variables used

to store important but intermediate
results.
Example: nav.fil.k to update.

List of external variables that
contain the function's results.

Example: nav.fil.x from update.

The quantity returned through the
function's name and/or quantities

returned by passed-addresses.

Parts that do not apply to a particular function will be left out. Standard C functions and
matrix library calls are not listed.

For a better description of external variables please see the file "store.c." For information
on local variables consult the comments in the function of interest.

Often macros appear in place of array names in the source code. These were created to
increase readability. For this list the array names were used in favor of the macros to more
clearly indicate what external arrays are at work.
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Con.c

Function: controller()

Purpose: Compute control input U = -K*X. X may be either
true or estimated state.

Called By: main

Input Variables:
nav.fil.x
nav.ship.gain

estimated state (14x1)
2x14 Riccati gain

nav.ship.velocity - ship velocity
TrueFlag - true State feedback if ON
true.ship.gain - 2x9 Riccati gain
true.ship.velocity - ship velocity
true.ship.x -

true plant state (9x1)

Output Variables:
true.ship.u - control input (2x1)

Function: environment()

Purpose: Update the plant's state transition matrix and state.

Called By: main

Calls: EnvironmentSTM, noise

Input Variables:
CrossTrackThreshold - STM update threshold
HeadingThreshold - STM update threshold
LaStPCT - cross track at last STM call
LaStPHE - heading error at last STM call
true.ship.gamma -

discrete control input
true.ship.phi - state transition matrix
true.ship.u - control input
true.ship.variance[] - state noise scalars

true.ship.x - true plant state

Intermediate Variables:
tmpl; trnp2 - temporary arrays

Output Variables:
true.ship.x - true plant state

Function: Sensorsimulator()

Purpose: Simulate sensor measurements for the estimator.
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Sensor lags and noise are optionally included.

Input Variables:
LagFlag - Sensor lag if ON
LastClock - previous clock bias

(external only to con.c)
sensor[i].along - sensori along rack position
sensor[i].cross - sensori cross track position
sensor[i].gamma - for lag equation
sensor[i].phi - for lag equation
sensor[i].type - type for sensor i
true.ship.x -

true ship state

Output Variables
LastClock - save clock bias for next time

LastFawMeasurement - for lag computation
nav.fil.z - filter measurement vector

Function: EnvironmentSTM(s)

Purpose: Update environment's A and B matrices, and recalculate
phi and gamma.

Called By: environment

Calls: UpdateSTM

Passed Value:
S - true.ship or nav.ship pointer

Input Variables:
true.ship.x - true ship state

Intermediate Variables:
tmpl,tmpz,tmp3 - temporary variables

Output Variables:
LastPCT - Last Plant Cross Track
LaStPHE - Last Plant Heading Error
true.ship.a - continuous system matrix
true.ship.b - continuous-control input matrix
true.ship.vel - ship velocity
STMStatus - note that this call was made

Function: UpdateSTM(s)

Purpose: Update given phi and gamma.

Called By: EstimatorSTM, EnvironmentSTM

Calls: riccati
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Passed Variables:
S

Input Variables:
nav.fil.x
ship.a
ship.b
ship.e
RicCTThreshold
RichEThreshold
TimeStep
TrueFlag
true.ship.x

Intermediate Variables:
tmp1, trnp2, trnp3
nav.ship
true.ship

Output Variables:
ship.gamma
ship.phi

true.ship or nav.ship pointer

estimated ship state
continuous system matrix
continuous-control input matrix
identity matrix
riccati call threshold
riccati call threshold
time increment
ON if true State feedback

true ship state

temporary arrays

address of nav.ship struct
address of true.ship struct

discrete control input
state transition matrix

Function: riccatiſs) .

Purpose: Compute optimal gain via the Riccati equation.

Called By: UpdateSTM

Calls: CompressPhiCamma, ExpandGain, ninv

Passed Variables:
S

Input Variables:
control.q
control.r
ship.gamma
ship.phi

Intermediate Variables:
tmp1,tmp2,tmp3
control.gain
control.gamma
control.gammat
control.p
control.phi
control.phit

Output Variables:
ship.gain
STMStatus

true.ship or nav.ship pointer

state weight

control weight

discrete control input
state transition matrix

temporary arrays

2x7 gain

7x2 gamma
control.gamma transpose

performance index
7x7 phi
control.phi transpose

2x9 or 2x14 gain (as needed)
indicate this call was made
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Function: CompressPhiCamma(s)

Purpose: Reduce given phi and gamma to 7x7 and 7x2, respectively.

Called By: riccati

Passed Value:
S - true.ship or nav.ship pointer

Input Variables:
ship.gamma - 9x2 or 14x2 gamma
ship.phi - 9x9 or 14x14 phi

Output Variables:
control.gamma - 7x2 gamma
control.gammat - control.gamma transpose
control.phi - 7x7 phi
control.phit - control.phi transpose

Function: ExpandGain(s)

Purpose: Expand 2x7 gain to 2x9 or 2x14.

Called By: riccati
-

Passed Value:
S - true.ship or nav.ship pointer

Input Variables:
control.gain - 2x7 gain

Output Variables:
ship.gain - 2x9 or 2x14 gain

Function: ninv(a,b)

Purpose: New square matrix inverse implementing Gaussian row reduction
with column pivoting.

Called By: riccati

Variable Passed:
a. - array to be inverted

Returned Variable:
b - inv(a) through address

and argument
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Est.c

Function: estimator()

Purpose: Call estimator routines in order.

Called By: main

Calls: CheckFilterStatus, extrapolate, update

Function: extrapolate()

Purpose: Extrapolate state and covariance to present time.

Called By: estimator

Calls: NominalMeasurements º

Input Variables:
nav.fil.dx - incremental state

nav.fil.p - covariance

nav.fil.q - . noise
nav.fil.xnom - nominal state

nav.ship.gamma - discrete control
nav.ship.phi - state transition matrix
nav.ship.phit - stm transpose
true.ship.u - control input

Intermediate Variables:
nav.fil.xdx - PHI*DX
nav.ship.u - augmented true.ship.u
tmpl,tmp2 - temporaries

Output Variables:
nav.fil.dx
nav.fil.xnom
nav.ship.p

Function: update()

Purpose: Perform Kalman update.

Called By: estimator

Calls: NewObservation, ComputeResidual

Input Variables:
nav.fil.dx - incremental state

nav.fil.p - covariance
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nav.fil.xnom
sensor[i].MNoise[]
SensorChannels

Intermediate Variables:
nav.fil.h
nav.fil.ht
nav.fil.k
tmpl, trmp2

Output Variables:
BadupdateCount
nav.fil.dx
nav.fil.x

nominal state

sensor i measurement noise
number of sensor channels

observation vector

nav.fil.h transpose

Kalman gain

temporary arrays

increment if any residual
incremental state
estimated state

was bad

Function: NewObservation(n)

Purpose: Compute direction cosines from sensor to ship; also
compute estimated range, heading, and bearing.

Elements from the observation vector are appropriately
installed into estimator's A matrix.

Called By: update

Passed Value:
In

Input Variables:
nav.fil.x
sensor[n]..along

sensor[n].cross
sensor[n]. Estalpha
sensor[n].type
SensorFlag

Output Variables:
Cosineſ]

EstimatedBearing
EstimatedHeading
EstimatedRange
nav.ship.a
nav.fil.h
nav.fil.ht

sensor for which observation

is computed

estimated plant state
sensor n cross track position

sensor n cross track position

sensor n alpha
sensor n type (range, etc.)
ON if sensors are employed

array of direction cosines
for STM update check
estimated bearing to sensor

estimated heading error
estimated range to sensor
estimator's A matrix
observation vector

nav.fil.h transpose

Function: ComputeResidual(n)

Purpose: Compute residual based on measurement type.



Called By: update

Calls: AngleSense

Passed Value:
In -

Input Variables:
EstimatedBearing -

EstimatedHeading -
EstimatedRange -
nav.fil.z -
nav.fil.dx -

sensor[n].type -
SensorFlag -

Returned Value:
residual -

sensor for which residual

is computed

estimated bearing to sensor
estimated heading error to sen.
estimated range to sensor

sensor measurement (range, etc)
sensor states in incremental

estimated ship state

sensor n type (range, etc.)
ON if sensors are estimated

difference

Function: EstimatorSTMO

Purpose: Update estimator state transition matrix (phi and gamma).

Called By: InitAll, CheckFilterStatus, CheckWaypointStatus

Calls: UpdateSTM, Update()

Input Variables:
Cosines[] -
nav.fil.x -

EnvStates -

Output Variables:
LastCosineſ] -

LastECT -

LastEHE -

nav.fil.dx -

nav.fil.xnom -
nav.ship.a -

nav.ship.b -

STMStatus -

present direction cosines
ship's estimated state
number of environment states

direction cosines at STM call
cross track at STM call
heading error at STM call
(environment states cleared)
equals nav.fil.x
estimator's A matrix
estimator's B matrix
indicate this call was made

Function: NominalMeasurements()

Purpose: Compute nominal measurements for use in control input
to estimator.

Called By: extrapolate

Input Variables:
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nav.fil.xnom - nominal ship state
sensor[i].along - sensori along track position
sensor[i].cross - sensori cross track position
sensor[i].type - sensori type (range, etc.)
Sensorstates number of sensor states

Output Variables:
nav.ship.u - control input to estimator

(true.ship.u. augmented with
nominal measurements)

Function: CheckFilterStatus()

Purpose: Perform miscellaneous checks on times, thresholds, etc.

Called By: estimator

Calls: EstimatorSTM, RestartPilter

Input Variables:
Cosineſ] - current direction cosines

Data Time - current time

EnvStates - number of environment states

LastCosineſ] - cosines at last STM call
LastTime - previous Data Time
nav.fil.x - estimated ship's state
SensorFlag - ON if sensors estimated

TimeGap - maximum TimeStep allowed
TimeStep - operating time increment

Output Variables:
BadupdateCount - 0 if > BadupdateLimit
LastTime - present DataTime becomes old
Settling Time - estimator's stable Data Time
ThresholdDevel - estimator's threshold level
TimeStep - (if different)

Function: RestartFilter()

Purpose: Called when estimator requires resetting due to an
excessive time gap.

Called By: CheckFilterStatus

Input Variables:
Data Time - current time
FilterStates - number of filter States

SettlingPeriod - length of time estimator
requires to stabilize

Output Variables:
LastTime - present Data Time becomes old

C-64



nav.fil.p
Settling Time
ThresholdLevel

initial covariance if RESETP
estimator's stable Data Time
new estimator threshold level

Function: Update()()

Purpose: Recompute Q.

Called By: EstimatorSTM

Input Variables:
EnvStates
nav.ship.alphaD
nav.ship.phi
nav.ship.variance[]

sensor[i]. Estalpha
sensor[i]. EstWar
Sensorstates

• Shipstates

Output Variables:
nav.fil.q

number of environment states

alpha forest. ship state
estimator's phi matrix
variance for est. ship state
alpha for est. sensor state
variance for est. sensor state
number of sensor states

number of ship states

estimator's q matrix

Function: ComputeDops

Purpose: Compute VDOP and HDOP (not used - needs revision).

Called By: (no one)

Input Variables:
nav.fil.hdop

Intermediate Variables:
tmpl,tmp2

Output Variables:
gdop
vdop

compressed nav.fil.h

temporary arrays

geometric dilution of precision
vertical dilution of precision



Init.c

Function: InitConstants()

Purpose: Initialize scalar values used elsewhere in the program.

Called By: InitAll

Output Variables:
See source listing.

Function: ReadControl File()

Purpose: Read user specified parameters from the control file.

Called By: InitAll

Calls: fe, Sizes

Output Variables:
Many - see source listing.

Function: Sizes()

Purpose: Initialization of important array dimensions.

Called By: ReadControlRile

Input Variables:
SensorChannels - number of sensor channels

Output Variables:
ClockState - number of clock states
Env$tates - " " environment states
FilterStates - " " filter States

Sensorstates - " " sensor States

Shipstates -
" " ship states

Function: CreateNMemory()

Purpose: Assign pointers to memory and dimension arrays.

Called By: InitAll

Output Variables:
ALL struct arrays. See source listing.
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Function: InitArrays()

Purpose: Assign initial values to newly created array structures.

nav.ship.gain
sensor[i].gamma
sensor[i].phi

Called By: InitAll

Input Variables:
ControlG)[] - state weight diagonal
ControlR[] - control weight diagonal
EnvStates - number of environment states
FilterStates - number of filter States

LastFawMeasurement[] - initial sensor measurements

pe[] - initial covariance diagonal
TimeStep - expect time increment
xest[] - initial estimator state

xtrue[] - initial plant state
ship hydrodynamic coefficients

Output Variables: •

control.q gain state weight
control.r gain control weight
nav.fil.dx incremental ship state
nav.fil.p covariance

nav.fil.q estimator's q matrix
nav.fil.x estimated ship state
nav.fil.z initial filter measurements

nav.ship.a estimator's A matrix
nav.ship.b estimator's B matrix
nav.ship.e identity matrix (used in STM)

estimator's riccati gain
gamma for sensori
state transition for sensori

true.ship.a environment's A matrix
true.ship.b environment's B matrix
true.ship.e identity matrix (used in STM)
true.ship.gain environment's riccati gain
true.ship.x initial ship true state



Output.c

Function: output()

Purpose: Send results to screen or file.

Called By: main

Function: PrintResidual(r,m,s)

Purpose: Send bad residual message to screen or file.

Called By: Update

Passed Values:
n - channel number
r - residual value

S - String

Input Variable:
Data Time - current time

Ship.c

Function: main()

Purpose: Start the program.

Called By: UNDK

Calls: controller, environment, Sensorsimulator, estimator,

CheckWaypointStatus, output

Function: InitAll()

Purpose: Perform ALL initialations.

Called By: main

Calls: cmdln, InitConstants, ReadControlRile, CreateNMemory,
InitArrays, ProcessMap, RotateShip, RestartFilter,
EnvironmentSTM, EstimatorSTM, riccati, output

Store.c

No calls are made in this file. All external variable storage occurs in this file.

C-68



Utils.c

Function: mondecode(p)

Purpose: Decode monitor selections given in control file.

Called By: ReadControlRile

Passed Value:
p - selection string pointer

Returned Value:
Code for monitor selection

Function: MType(p)

Purpose: Determine sensor type as provided in the control file.

Called By: ReadControlRile

Passed Value:
p -

sensor type string pointer

Returned Value:

Code for sensor type

Function: cmdln(argc, argv)

Purpose: Interpret command line arguments. Arguments consist
of options the user may wish to select, control file
name, and an optional output file name.

Called By: InitAll

Calls: help

Passed Values:
argc - number of command line arguments
argv[][] - command line strings array

Output Variables:
Control File - control file pointer
ErrorPlag
EstimatorFlag
Lagflag
outfp - out() file pointer
Outputfile - output file pointer
Sensorflag
TrueFlag
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UpdateFlag

Function: help(name)

Purpose: Print useful message to aid running the program.

Called By: cmdln

Value Passed:
Iname - name of executable file

Function: finish(code)

Purpose: Take care of closing business and exit the program.

Passed Variable:
code - value to pass to exit()

Function: ACtoEN(along, cross, east, north)

Purpose: Convert along track/cross track position to east/north.

Called By: (sometimes output)

Passed Values:
along - ship's along track position
CIOSS - ship's cross track position

Input Variables:
ShipPrompointindex - index in waypoint array

to ship's frompoint
waypoint[ShipPrompointindex].east

- frompoint's east location
waypoint[ShipPrompointindex).north

- frompoint's north location

Returned Values:
CaSt - ship's east position
north - ship's north position

Function: AngleSense(RefAngle, Var/Angle)

Purpose: Adjust the variable angle to coincide with the reference
angle. This is to avoid 360°->0 discontinuity.

Called By: ComputeResidual, ProcessMap

Passed Values:
RefAngle -

reference angle
Varangle -

variable angle

C-70



Returned Value:

Normalized variable angle.

Function: NormalizeAngle(angle)

Purpose: Insure given angle is within 0 to 360 degree range.

Called By: (nowhere at present)

Passed Values:
angle - given angle

Returned Value:
Angle between 0 and 360.

Function: noise(v)

Purpose: Simulate noise with a random number generator.
Noise is zero mean with variance v.

Called By: environment, Sensorsimulator

Passed Value:
V - desired noise variance

Returned Value:

A point of noise.

Function: fe(fp)

Purpose: Extract uncommented text from a file.

Called By: ReadControlRile

Calls: decode

Passed Value:
fp - pointer to file

Returned Value:

Pointer to uncommented text string.

Function: decode(text)

Purpose: Set integer token to identify string returned by fe
.

Called By: fe

Passed Value:
text - text to be identified
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Returned Value:

Code identifying string.
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Way.c

Function: CheckWaypointStatus()

Purpose: Check need for waypoint switch.

Called By: main

Calls: EnvironmentSTM, RotateShip, RestartFilter, EstimatorSTM

Input Variables:
nav.fil.x - estimated ship state
ShipPrompointIndex - frompoint index in w; array
true.ship.x - true ship state

Function: ReadWaypoint(w)

Purpose: Read data for one waypoint.

Called By: ProcessMap

Passed Value: -

W - pointer to current waypoint
array being processed.

Output Variables:
Modified waypoint structure for current waypoint.

Function: ProcessMap()

Purpose: Read in waypoint map and compute turning angle and other
values for each waypoint.

Called By: InitAll

Calls: AngleSense

Output Variables:
waypoint[] - waypoint array
Waypoints - number of waypoints

Function: RotateShip()

Purpose: Project ship onto new waypoint system.

Called By: InitAll, CheckWaypointStatus

Input Variables:
nav.fil.x - -

estimated ship state
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sensor[i].along
sensor[i].cross
ShipPrompoint.Index
true.ship.x
waypoint[]

Output Variables:
nav.fil.x
nav.ship.a
sensor[i].along
sensor[i].cross
true.ship.a
true.ship.x

sensor along track position

sensor cross track position
ship's frompoint index
true ship state
waypoint array

rotated nav.fil.x
estimator's A matrix

rotated sensori along position

rotated sensori cross position
environment's A matrix

rotated true.ship.x
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Ship Control File

; Ship Control File

WPMap. 1 ; waypoints file
4 ; number of sensor channels

f Initial states | Initial uncertaities

r control est p

0.0 0.0 1.0 ; sway velocity
0.0 0.0 3.04e–4 ; yaw rate
0.0 0.0 3.04e–2 ; heading error
0.0 0.0 1.062 ; cross track
0.0 0.0 1.0e2 ; along track
0.5 0.0 1.0 ; east Current
0.5 0.0 1.0 ; north current

0.0 0.0 1.0e-12 ; clock bias
.0e-8 1.0e-8 1.06-18 ; clock drift

1. Oe? 1.0e 7 1.0e 6 ; Sensor l
1. Oe? 1.0e.7 1.0e 6 ; sensor 2
1. Oe? 1. Oe? 1.0e 6 ; sensor 3
0.0 0.0 3.04e-2 ; Sensor 4

Sensor types, with time constant, channel variance, threshold
levels, and measurement noises per sensor. Sensor types are
listed in order of occurrence.

Sensor types are:
range - range in meters
bearing - bearing in radians
heading - heading in radians

Time Const. S Sensor var. Thresholds

; type enV est env est hi mid lo R-hi R-lo

range 0.159 0.159 25.0 25.0 1.0e 4 50.0 10.0 1.0e 6 1. OeC)

range 0.159 0.159 25.0 25.0 1.0e 4 50.0 10.0 l. Oet, l. Oeo
range 0.159 0.159 25.0 25. O 1.0e 4 50.0 10.0 1.0e 6 l. Oeſ)
heading 1.0 1.0 7.6e-5 7. 6e−5 6.28 3.0 2.0 1.0e 6 1. Oe-4

Time Const. Variance

env est env est

0.1 0.1 ; sway velocity
4.0e-6 4.0e-6 ; yaw rate

10. 0 10. 0 0.0 0.0 ; east Current
10. 0 10. 0 0.0 0.0 ; north current



:

:

;

; ; i

;

100.0 100.0

-
r

w

1. Oe-18 1. Oe-18 ; clock

max time gap
estimated data timestep
heading error difference threshold
cross-track error threshold
Riccati heading error threshold
Riccati cross-track threshold
direction cosine change threshold (radians)
distance to topoint to switch waypoints

settling period (seconds)
; number of bad updates tolerated

Land sensor coordinates in East/North
For range/sensor case repeat land coordinates.

5000000. 0

5000000. 0

-10000000. 0

north

8660254. 0 ; land sensor 1
-8660254. 0 ; land sensor 2
0.0 ; land sensor 3

ship hydrodynamic coefficients

. 0

env est

305.0 305.0 ; ship length
5.14 5.14 ; ship velocity
0.175 0.175 ; CVU
1. 38 1. 38 ; CWU

0.863 0.863 ; CVDV
0. 518 0. 518 ; CVW

5.25 5.25 ; CWDV
5. 32 5. 32 ; CWW

Performance criteria

. 0 1.0 1.0 0.0 0.0 0.0 ; q matrix
; r matrix

monitor selections (K, P, PHI, Q, X, Z, H, RES)

MUST HAVE THIS
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Control File Description

User definable parameters are read from a control file. Description of these parameters and
what they are used for forms the purpose of this document.

Interleaved with parameters in the control file are informative comments which are intended
to aid the user. Comments are begun with a semicolon (;

)

and terminated with a newline.

Waypoint File Name
Name o

f

file containing complete waypoint map.

Number o
f

Sensor Channels
Number of sensor channels available to the estimator.

Initial Environment State

Initial Estimator State
Initial Covariance
Initial environment and estimator states, and initial covariance diagonal. Units for
distance, angle, and time are meters, radians, and seconds, respectively; this
includes rate terms. Covariance elements are in terms o

f units-squared. Note that
the environment has no sensor states - the values shown serve a

s
the sensor lag

simulation's initial state.

Parameters/Sensor

The first entry indicates what sensor the remaining parameters describe. Available
sensor types are range, bearing, and heading. The ensuing simulation will use the
list o

f

sensors specified.

Environment and estimator sensor time constants (seconds) are next. Lag in the

sensors will b
e

created given the environment's sensor time constants, while the
estimator will try to model this lag with the time constants provided to it

.

Environment and estimator sensor noise variances (meters-squared radians
squared) follow. Environment variances will form the disturbances added to the
simulated sensor measurements, while the estimator variances are used in the Q

matrix sensor elements.

The remaining five columns belong exclusively to the estimator.

High, middle, and low threshold levels (meters o
r

radians) set reasonableness limits
on filter residuals. When starting, the threshold is set high for "Settling Period"
(see below) length o

f

time. After this time the normal, low, threshold level is

active. If a "Bad Update Limit" (see below) has been exceeded, the middle
threshold level is set until "Settling Period" length o

f

time has expired, a
t which

time the low level once again becomes active.
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High and low measurement noises (meters-squared or radians-squared) are used to
weight filter measurements. Residuals within the threshold limit are weighted by

the low noise, while residuals exceeding the threshold are deweighted with the
higher noise level.

Environment and Estimator State
Time Constants and Variances

The first two columns are environment and estimator state time constants (seconds).
Values found here are used in the environment's and estimator's state transition
matrices, as well as the estimator's Q matrix. Entries for sway velocity and yaw
rate are not present, as the "Ship Hydrodynamic Coefficients" (see below)
embodies these time constants.

The last two columns are state noise variances (units identical to covariance) for
environment and estimator. Environment noise variances form the disturbances

added to the true ship state, while the estimator variances are used in the formation
of the corresponding Q matrix elements.

Miscellaneous Parameters

Maximum Time Gap (seconds)

Greatest time between filter updates allowed before "restarting" filter.
Restarting the filter involves setting the threshold high for "Settling Period"
(see below) length of time.

Estimated Data Timestep (seconds)
Assumed interval between filter updates.

Heading Error Difference Threshold (radians)
A heading error change from last State Transition Matrix (STM) update to
present surpassing this value will cause another STM update.

Cross Track Threshold (meters)

A cross track change from last STM update to present surpassing this value
will cause another STM update.

Riccati Heading Error Threshold (radians)

A heading error greater than this value present at the time of an STM update

will also cause a control gain update (calculated by A.R.E.).

Riccati Cross Track Threshold (meters)

A cross track greater than this value present at the time of an STM update

will also cause a control gain update.

Direction Cosine Change Threshold (no units)

A direction cosine change from the last STM call to present exceeding this
value will prompt another STM update.

Distance to Topoint (meters)

When ship's along track position is within this distance from the topoint, a
waypoint switch will occur.
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Settling Period (seconds)

The length of time assumed for the filter to recover from a transient, due
either from startup or a restart. Filter threshold is set high during this
interval, and returned to low when complete.

Number of Bad Updates Tolerated (no units)
A filter update with any number of bad residuals is considered a bad update.

An unbroken string of bad updates surpassing this value will cause the filter
threshold to be set at the middle level for Settling Period length of time.

Sensor Locations
East/North coordinates in meters of each sensor's land station (except heading).

Ship Hydr amic fficient

True and assumed ship length (meters), ship velocity (meters/second), and
hydrodynamic coefficients.

P an iteri

Diagonals for optimal gain-matrices. Q and Rhere should not be confused with
variables with similar names used in the estimator.

Filter Monitor Selections

Estimator matrices selected here may be viewed by using the -m option. The key is
:

Letter Matrix

K Kalman gain

P Covariance
PHI State transition matrix

Q State noise

X Incremental state

Z Incasurement VeCtor

H Observation vector
RES Filter residual

The string END must terminate the selection list.
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Appendix D

Footprint Program

1) Source Code
2) Control File



include <stdio. h
include <math. h
include "ship. h":

# define ENXY
# define RLCROSS

/*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ************** ****
ºr

* Program "foot"
+

*r

ºr

*r

Object: Determine footprint of ship navigating through
a pre-specified waypoint system.

UNIX calling program
set variables to initial values
read data from control file
read next position from file
read waypoint map
process waypoint map
check each corner for need to rotate
adjust angle sense
along/cross to east/north conversion
position of side on bisector
left/right extremes
print results to screen or file

if ENXY

* Input: (those used by foot)
ºr

ºr

*
+ Output:
* if RLCROSS
*r

ºr

+

*

time, ship's cross track, along track, and heading error,
and current frompoint index.

input, acculumated along track, left extreme, right extreme

input, EN position of origon, EN position of each point

****** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/**********************************************************************
+ Functions contained in this file are:

main ()
Initvariables ()
ReadControl File ()
NextPosition ()
ReadWaypoint ()
ProcessMap ()
CheckShipPoints ()
AngleSense ()
ACtoEN ()
Bisector ()
LRExtremes ()
output ()

*********** * * * * * * * * * ******** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Global Declarations
*/

int
Waypoints,
ShipPoints,
ShipErompointlndex,
STMStatus

/*
/*
/*
/*

number of waypoints in map */
number of given points on ship */
current ship position frompoint */
(not used by foot, but in output) */
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double
time, /* current time */
ShipCross, /* ship cross track position */
ShipAlong, /* ship along track position */
ShipHeadingError, /* ship heading error */
Cosh E, /* cos (ShipHeadingError) */
SinHE, /* sin (ShipHeadingError) */
pi, /* 3.1415. . . */
Angle.90, /* 90 degrees */
Angle270, /* 270 degrees “/
Angle360, /* 360 degrees */

/*
+

ºr
Other variables, not necessarily used by this program,
but included in an augmented output file.

+/
rudder, /* ship's rudder position */
EnvKIE, /* environment's heading error */
EnvcT, /* º cross track position */
EnvaT, /* º along track position */
Esthe, /* estimator's heading error */
EstCT, /* º cross track position */
Esta‘T, /* wº along track position */
EstCTSD, /* ºr cross track standard deviation */

Skiplinterval,
NextENTime

FILE
*Control File, /* control file */
*OutputEile, /* output file */
*ErrorFile, /* error message file */
*PositionFile, /* ship position file */
*WaypointEile /* waypoint map file */

struct shippoint shippoint [10] ;

struct waypoint
waypoint [20],
*LastFrompoint,
*ShipPrompoint

/* shippoint structure storage */

/* waypoint structure storage */
/* pointer to last frompoint in map */
/* pointer to ship's frompoint */

/********* main ******** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

main (argc, argv)
int argc;
char **argv;

Initvariables ();
ReadControl File (argc, argv);
ProcessMap ();

while ( 1 ) {

NextPosition ();

/* initialize pi, etc. */
/* get run dependent information */
/* read in and process waypoint map */

/* read next position */
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CheckShipPoints (); /* update each ship point position */
output (); /* display results */

/* * * * * * * * * Initvariables * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Initvariables ()
{

pi = 4.0°atan (1.0);
Angle30 = pi/2.0;
Angle270 1.5°pi;
Angle360 = 2.0"pi;

NextENTime = 0.0;

OutputEile = stdout: /* default file */
ErrorFile = stderr; /* default file */

º

/* * * * * **** ReadControl File * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **/

/*
* Read run dependent information from file.
* Control file name is given on the command line.
*/

ReadControl File (argo, argv)
int argc;
char **argv;
{

char
*fe (), /* return pointer to uncommented text "/
*p /* temporary text pointer */

/*
* Open control file.
* If not enough arguments are provided, give usage message.
*/

if (argcº.2) {
fprintf (Error File,

"usage: %s control file ſoutfile] \n", argv[0]);
exit (0);

}

if ( (Control File=fopen (argv[1], "r")) = NULL ) {
fprintf(ErrorFile, "%s: can't open control file '$s' \n",

argv[0], argv[1]);
exit (0);

}

/*
* Open external output file, if one is given
* (stdout is default).
*/

if (argc-2) {
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if ( (OutputEile=fopen (argv[2], "w")) = NULL ) {
fprintf (ErrorFile,

"%s: can't open output file '$s' \n",
argv[0], argv[1]);

exit (0);
}

}

/*
* Open ship position file
*/

if ( (PositionFile=fopen ( (p=fe (Control File)), "r")) = NULL ) {
fprintf(ErrorFile, "%s: can't open position file '#s' \n",

argv[0], p);
exit (0);

}

if ( (WaypointEile=fopen ( (p=fe (Control File)), "r")) = NULL ) {
fprintf (ErrorFile, "%s: can't open waypoint file '#s' \n",

argv[0], p);
exit (0);

}

/*
* Points to check on ship
*/

for (ShipPoints=0; ShipPoints<4; ++ShipPoints) {
shippoint [ShipPoints]. Frompointlndex = 0;
shippoint [ShipPoints]. RelCross = atof (fe (Control File));
shippoint [ShipPoints] . RelAlong = atof (fe (Control File));

}

SkipInterval = atof (fe (Control File));

/********* NextPosition * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
Read next ship position point.
Format: time cross track along track headingerror frompointindex

NextPosition ()
{

if (fscanf (PositionFile, "%lf$lf$lf$lf$lf$lf&lf$lf$lf$d%d",
&time, &rudder, &EnvhE, &EnvOT, &EnvaT, &EstBE, &Estc.T., &Est/AT,

&EstCTSD, &STMStatus, &ShipPrompointlndex)
= EOF) {

fprintf (ErrorFile, "End of input. \n");
exit (0);

}

/*
* Check if ShipPrompointlndex is beyond waypoint map.
*/

if (ShipPrompointindex = Waypoints) {
fprintf(ErrorFile, "NextPosition: No more waypoints. Nn");
exit (0);



}

ShipErompoint = &waypoint [ShipPrompointlndex);
/*

* These points are taken as the ship's reference points
*/

ShipHeadingError = EnvKE;
ShipCross = EnvcT;
ShipAlong = EnvaT;

/*
* Useful values in CheckShipPoints () heading error rotation
*/

CosłłE = cos (ShipHeadingError);
SinHE = sin (ShipHeadingError);

/********* ReadWaypoint * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Read data for one waypoint
*/

ReadWaypoint (w)
struct waypoint *w;
{

return ( (int) fscanf (Waypoint File, "%d%lf$lf",
&w->id, &w->east, &w->north)

);

/********* ProcessMap * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Read waypoint map and compute turning angle and other constants
* for each waypoint.
*/

ProcessMap ()
{

int i ; /* loop incrementor */

double
AngleSense (), /* returns arg2 in same quadrant as argl " /
de, /* east axis difference */
dn /* north axis difference */

-
º

struct waypoint
*to, /* topoint waypoint pointer */
* from /* frompoint waypoint pointer “/

-
w

struct shippoint *s; /* ship point utility pointer */
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/*
* Start with first waypoint
*/

Waypoints = 1;
from = waypoint;
to = waypoint;

/*
* Read first waypoint
*/

if ( ReadWaypoint (from) = (int) EOF ) {
fprintf (ErrorFile,

"ProcessMap: incomplete or empty map file. \n");
exit (0);

}

for (++to; Waypoints<20; ++Waypoints, ++to) {

/*
* Read next waypoint
*/

if (ReadWaypoint (to) = (int) EOF) {

if (Waypoints = 1) {
fprintf (Error File,

"ProcessMap: At least 2 are waypoints need for navigation! \n");
exit (0);

} else {

/*
* End of map - stop processing.
*/

/*
* Set frompoint for each ship point to
* first waypoint
*/

for (i-0, s-shippoint; i3ShipPoints; ++i, ++s) {

s->from = waypoint;
}

LastFrompoint = &waypoint [Waypoints-2);

return;

}

}

/*
* Distance from last waypoint to current waypoint.
*/

de to->east - from->east;
dn = to->north - from->north;
from->Trajectory Length = sqrt (de” de + dn*dn);

/*
* Absolute heading to topoint from frompoint
*/

D-7



from->heading = atan2 (de, dn) + (de-–0.0 ° 0.0 : Angle360);

/*
* Heading change (turning angle) from last trajectory
* to current.
* NOTE: Anglesense () returns an adjusted second argument
*/

if (Waypoints = 1) {
from->Turnangle = 0.0;

} else {

from->Turnängle
= Anglesense ( (from-1)->heading, from->heading)

- (from-1)->heading;
}

/*
* Constants for later use in waypoint switching,
* coordinate transformations, etc.
*/

from->SinTA = sin (from->Turn/Angle);
º

from->TanTA2 = tan (from->Turn/Angle/2.0);
from->CosTA = cos (from->Turn/Angle);
from->CosHeading = cos (from->heading);
from->SinHeading = sin (from->heading);

/*
* Get ready for the next round;
* the topoint becomes a frompoint.
*/

from = to;

/********* CheckShipPoints * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Update positions of all given ship points. Then check all ship
* points for waypoint proximity. If check passes, transform point
* to next waypoint system.
*/

CheckShipPoints ()
{

int if /* Loop incrementor */

double
xalong, /* spare cross track variable */
at St /* Along Track Switching Threshold */

struct waypoint *sf: /* ship's reference point frompoint */
struct shippoint *s; /* current ship point */

/*
* The following loop cycles through each given ship point.
* In the following comments, "ship's reference point"
* refers to the position of the ship as provided in
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* the position file. "This point" refers to the
* current ship point being updated.
*/

for (i-0, s-shippoint; i3ShipPoints; ++i, ++s) {

* Check this point for waypoint proximity if
* frompoint is not last in waypoint map.

* If point is across channel bisector, switch
* to next waypoint system.
*/

if (s->from = LastFrompoint) {

atst = s->from->TrajectoryLength
– s->cross * (s->from+1)->TanTA2;

if (s->along > atst) {
++s->FrompointIndex;
++S->from;

}

}

/*
* Update the along track/cross track position of this point.
ºr

* Rotate the relative location for this point by the
* ship's heading error. Then add to the ship's position.
* to find the location of this point in the reference
* point's waypoint system.
*/

S->RefCross
= ShipCross + s->RelAlong*SinHE+s->RelCross"CosHE;

s->RefAlong
= ShipAlong + s->RelAlong*CoshE-s->RelCross”SinHE;

if (ShipPrompointlndex = s->Frompointlndex) {

/*
* Ship's reference point is in same waypoint system
* as this point; no coordinate rotations are needed.
*/

S->Cross = S->RefCross;
s->along = s->RefAlong;

} else if (ShipErompointlndex > s->Frompointlndex) {

/*
* Ship's reference point is in front of this point,
* and is separated from this point by the channel
* bisector. Therefore, rotate this point by
* -Turnangle (minus Turn/Angle).
*/

sf = ShipPrompoint;
S->CrOSS

= s->RefAlong*sf->SinTA+s->RefCross” sf->CosTA;
s->along

= s->RefAlong’sf->CosTA—s->RefCross” sf->SinTA
+ s->from->Trajectory Length;

} else if (ShipPrompointlndex < s->Frompointlndex) {
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* This point is ahead of ship's reference point,
* and is separated from the reference point by
* the channel bisector. Therefore, rotate this
* point by Turnängle.
*r/

xalong = s->RefAlong - ShipErompoint->TrajectoryLength;
S->Cross = S->RefCross * S->from->COSTA

– xalong * s->from->SinTA;
s->along = s->RefCross * s->from->SinTA

+ xalong * s->from->CosTA;

/********* Anglesense * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Adjust Varangle sense to coincide with RefAngle
* to avoid the 360°->0 discontinuity.
*r/

double Anglesense (RefAngle, Varangle)
double

-

RefAngle, /* the angle with which to compare Varangle */
Varangle; /* the angle to be normalized (if needed) */

if (RefAngle-Angle270 && Varangle.<Angle.90) {
Varangle += Angle360;

} else if (RefAngle-Angle.90 && Varangle-Angle270) {
Varangle -= Angle360;

}

return ( Varangle );

/* * * * * * * * * ACtoEN * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Convert along/cross track position to east-north
*/

ACtoEN (f, cross, along, east, north)
struct waypoint *f; /* frompoint structure pointer +/
double

CrOSS, /* given cross track */
along, /* given along track */
* east, /* returned east position */
*north /* returned north position */

{

*east f->east + along”f->SinHeading + cross”f->Cosheading:
*north f->north + along”f->CosHeading – cross”f->SinHeading;
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/* * * * * * * * * Bisector * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
* Position of ship's side on bisector
*/

double Bisector (pl., p.2)

struct shippoint *pl, *p2; /* ship points */
{

double
Iſla, /* ship's side slope */
mb, /* slope of bisector */
TrajLen /* along track position of bisector */

struct waypoint *to, *from;

/*
* Determine which waypoint system reference
* point is in.
*/

if (p2->Frompointlndex > p1->Frompointlndex) {

from = pl->from;
to - p2->from;

} else {

from = p2->from;
to = pl—from;

}

ma = p2->RefCross - pl->RefCross;
if (ma = 0.0) {

return ( p2->RefCross );
}

ma = (p2->RefAlong - pl->RefAlong) /ma;

if (from = ShipPrompoint) {

mb = -to->TanTA2;
TrajLen = from->Trajectory Length;

} else {

mb = to->TanTA2;
TrajLen = 0.0;

}

return ( (TrajLen + ma"p2->Refoross – p2->RefAlong) / (ma – mb) );

/********* LRExtremes *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

LRExtremes (LeftCross, RightCross, Leftlindex, Rightlindex)
double

*LeftCross, /* leftmost ship position */
*RightCross /* rightmost ship position */

int
*Left|Index, /* leftmost point ID (if any) */
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*RightLindex /* rightmost point ID (if any) */

int if /* loop incrementor */

double
Bisector (), /* ship's side position on bisector */
CrOSS /* cross track temp */

struct shippoint *s:

s = shippoint;
*Left|Index = 0;
*RightLindex = 0;
*LeftCross = S->Cross;
*RightCross = s->cross;
for (i-1, ++s; i3ShipPoints; ++i, ++s) {

Cross = S->Cross;

if (cross < *LeftCross) {

*LeftCross = cross;
*Left|Index i;

} else if (cross > *RightCross) {
*RightCross = cross;
*RightLindex = i,

}

if ( (s-l) ->Frompointlndex 1= s->Frompointlndex) {

cross = Bisector (s-l, s);

if (cross < *LeftCross) {

*LeftCross CrOSS;
*Left Index i + ShipPoints;

} else if (cross > *RightCross) {
*RightCross = cross;
*Rightlindex = i + ShipPoints;

/* * * * * **** output * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

output ()

int
i, /* loop incrementor */
Leftlndex, /* index to leftmost point */
Rightlindex /* index to rightmost point */

double
Bisector (), /* cross track position on bisector */
LeftCross, /* cross track of leftmost point */
RightCross, /* cross track of rightmost point */
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east, /* east position of point */
north /* north position of point */

-
º

struct shippoint *s;

# ifdef ENXY
if (time ×-NextENTime) {

fprintf(Output File, "%. 21f", time);
ACtoEN (Shipfrompoint, 0.0, ShipAlong, &east, &ndrth);
fprintf(OutputEile, "\tº .2lf\tº .2lf", east, north);

for (i-0, s-shippoint; i3ShipPoints; ++i, ++s) {

ACtoEN (s->from, s->cross, s->along, &east, &north);
fprintf(OutputEile, "\tº .21f.\t?. 2lf", east, north);

}

NextENTime = time + SkipInterval;
putc ('\n', Outputfile);

}

# endif

# ifdef RLCROSS
fprintf(OutputEile, "%. 21f", time);
for (i-0; i-ShipErompointlndex; ++i) {

ShipAlong += waypoint [i].Trajectory Length;
} -

fprintf (Outputfile,
"\tº .21f\tº .2lf\tº .21f\tº .2lf\tº .21f\tº .21f\t$.2lf\t$.2lf \tºd\tº d"

rudder, EnvKIE, EnvCT, EnvaT,
EsthB, EstcT, Estat, EstCTSD,
STMStatus, ShipPrompointlndex);

LRExtremes (&LeftCross, &RightCross, &Leftlindex, &Rightlindex):
fprintf(OutputEile, "\t?. 2lf\t}.2lf\tº.2lf",

ShipAlong, LeftCross, RightCross);
putc ('\n", OutputEile);

# endif

}

w
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Control File

Program "foot" control file

run4.raw ; input file
WPMap.1 ; waypoint file

; Ship corner points

-
y

-25.0 -152.0 ; rear left
-25.0 152.0 ; foward left
25.0 152.0 ; rear right
25.0 -152.0 ; forward right

120.0 ; skip interval for EN box plot
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